The Korean Communications
in Statistics Vol. 7, No. 2, 2000
pp. 385-392

A Rao—Robson Chi-Square Test for Multivariate Normality
Based on the Mahalanobis Distances
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Abstract

Many tests for multivariate normality are based on the spherical coordinates of the
scaled residuals of multivariate observations. Moore and Stubblebine’s (1981) Pearson
chi-square test is based on the radii of the scaled residuals, or equivalently the
sample Mahalanobis distances of the observations from the sample mean vector. The
chi-square statistic does not have a limiting chi-square distribution since the
unknown parameters are estimated from ungrouped data. We will derive a simple
closed form of the Rao-Robson chi-square test statistic and provide a self-contained
proof that it has a limiting chi-square distribution. We then provide an illustrative
example of application to a real data with a simulation study to show the accuracy in
finite sample of the limiting distribution.
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1. Introduction

Let X;,X3,..,X, be a random sample from a #A-dimensional distribution. Many tests for
multivariate normality are based on the scaled residuals

Zi=S "(x,—X),

where X and S is the sample mean vector and sample covariance matrix. The scaled
residuals remove the sample means and sample covariances and thus have a null sample mean
vector and an identity sample covariance matrix. Those tests based on the scaled residuals

usually utilizes their spherical coordinates R; and U,; given by

R=VZ{z;=\ (X,(- X)'SUX:— X), U=2Z]R, W
where ‘ ¢’ is a notation for transpose. For example, Moore and Stubblebine’s (1981) chi-square
test and Mardia’s (1970) multivariate skewness and kurtosis tests are based on the radii R;,

Rayleigh statistic (Koziol, 1983) is based on the unit residuals U/;, and Quiroz and Dudley’s
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(1991) chi-square test is based on both R; and U,.
We can note that the radii R; are the sample Mahalanobis distances of X;’s from X and

that R? have an asymptotic chi-square distribution with % degrees of freedom for large »
when the sample is from a multivariate normal distribution. Thus the chi-square probability
plot of R% can be an informal tool for checking the multivariate normality of the sample.
Moore and Stubblebine’s procedure is a formal chi-square test and is based on the cell counts
of R;'s falling into a fixed partition of the real line. They derived the limiting distribution of

the statistic only when the real line is partitioned such that the probability of R; falling in

each interval is equal. Park (1999) considered the general case where equiprobable intervals
are not employed and derived the limiting distribution of the statistic which can be applied to
unequally probable intervals as well as equiprobable intervals. However, the test statistic does
not have a limiting chi-square distribution and we have some practical difficulty in calculating
the asymptotic p-value of the test.

It is well known that the Pearson chi-square statistic does not have a limiting chi-square
distribution when unkown parameters are estimated from ungrouped data since the work of
Chernoff and Lehmann (1954). We will employ the generalized Wald's method so as to make
the resulting chi-square test statistic have a limiting chi-square distribution. Such chi-square
statistic is discovered by Rao and Robson (1974) and indepedently by Nikulin (1973) and will
be denoted by the Rao-Robson statistic in this paper. We will provide a simple closed form of
the Rao-Robson chi-square statistic corresponding to the Pearson statistic suggested by
Moore and Stubblebine (1981). In order to show that the Rao-Robson chi-square statistic has
a limiting chi-square distribution, we can apply a standard theorem on the quadratic forms of
normal variates but will provide a self-contained direct proof instead.

In Section 2, we provide a simple closed form of the Rao-Robson chi-square statistic and
show directly that it has a limiting chi-square distribution. In Section 3, we provide an
illustrative example of application to a real data set with a simulation study to check the
accuracy in finite samples of the limiting distribution.

2. Main Result

Before presenting main result for the Rao-Ronson chi-square test statistic, we will define
some notations. Unless otherwise stated, vectors will be column vectors, but for convenience
they will be written in text as row vectors.

For a given vector y=(¥,, ¥y, --,¥,), We define the diagonal matrix D(¥) and the vector

of square root values vy to be
D(y)zdiag(ylvyZv"'nym)’ G=(\/7’V_y‘2v "'sm)- (2)

Let Nfu,2) denote the k-variate normal distribution with mean vector # and covariance
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matrix X and let x*(k) denote the chi-square distribution with # degrees of freedom.
Let X;, X, -.,X, be a random sample from NLz,2%) where X is nonsingular. Let

6=(u,Y) be the parameter of the distribution and let the maximum likelihood estimator
(MLE) of @ be denoted by 6,=(X,S), where # is used for the denominator of the
sample covariance matrix S. Let 0= c¢y<{c){:"*<{cy = be a sequence of nonnegative real
numbers which forms a partiton I}, 1, ...,1y of the range of the radi R;, defined in (1),
such that I;=[c¢;,¢;v1), 1=1,2,..,M. Let N, denote the number of Rjz's falling into the
interval I;, then the estimated probability p, of R,Z"s falling into /; is given by
pin=Po(Ri€)=Fi(c;i))— Fu(c),

where F,(+) is the cumulative distribution function of x°(#). Note that the vector
Pn=(D1n» -, Pun) of estimated probabilities does not depend on #n. Let V, be the M
vector of standardized cell counts having 7-th component

(Nin— 10 i)V 10 i,

then the Pearson chi-square test statistic for multivariate normality suggested by Moore and
Stubblebine (1981) is given by
(N in np in)2
=1 NP in

The limiting distribution of this statistic is that of a weighted sum of chi-square variates

= ViV, 3)

but is not an exact chi-square distribution since @ is estimated by the MLE 4, from

ungrouped data. This is a well known fact since the work of Chemnoff and Lehmann (1954).
Although there have been much work on obtaining numerical approximations to the distibution
of a weighed sum of chi-square variables (see Imhof (1961), Solomon and Stephens (1977),
Farebrother (1990) among others), the asymptotic p-value of the statistic is not easy to
calculate in practice.

The Rao-Robson chi-square statistic has a limiting chi-square distribution and thus is easy
to calculate its asymptotic p-value. Since the statistic is known to be powerful (see Rao and
Robson (1974) and Spruill (1976) among others), and is easy to compute in our case, it will
be much suited for testing multivariate normality. Since we need to calculate the limiting
variance of the standardized cell counts V, in calculating the statistic, we first provide its

limiting distribution in the following lemma:

Lemma 1. (Park, 1999) Under the assumptions described in this section,
V, —% Ny(0,A) as n— oo

where
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Azl_\/—;;z pnt_ZBBt, B={D(Pn)} _l/z(dl lk, -'-,dMlk)t
with 1, the k-vector of ones, the square root vector Vp, and the diagonal matrix D(p,)
defined in (2), and
di= (e e e ) b,

_[[kE=2)--2]1 k even
bk‘{(z/n) VI k(k—2) 11 ' & odd.

Note that the limiting variance A of V, does not depend on the unknown parameter 6.

Thus the Rao-Robson chi-square statistic is given by the form ViA~V,, where A~ is a
generalized inverse of A. It is known by the general Wald’s method (see p. 173 of Rao and
Mitra (1971) for example) that if x~ N,(0,%) and rank(X)=~k then x'3 x~ ¥*(k), and
thus we can easily show that

ViA“V, =5 F(M—-1) as n—oo,
We will not use this result since we can easily provide a self-contained direct proof that it

holds for the Moore-Penrose inverse. We use the Moore-Penrose inverse A’ in computing
the closed form of the statistic since it is easy to calculate. Here is the main result on the
Rao-Robson chi-square test statistic:

Thoerem 1. Under the preceding assumptions, the Rao-Robson chi-square test
statistic is given by

_ t At _ (Nm—npm)z Zk (Nin_npin) 2
T,= ViA' V,= 3. + [ﬁld,.-———

=1 np i n(1—-2kd") | = Din
and it has the limiting »*(M—1) distribution, where d;’s are defined in Lemma 1 and
=3 (d/p .
Proof: Define D=B/\/g , then the limiting variance of V), is given by
A=I-Vp p,'— 2kd" DD".
Since D'D=1,1%/k, it is easy to show that DD’ is an idempotent matrix of rank 1 and so
is \/?,,\/;n_’ . Furthermore, since gl d;=0, two idempotent matrices DD’ and V p,V p,’ are

orthogonal to each other. Therefore A can be expressed as

(I—V b\ p,"YI—2kd"DD"),

whose Moore-Penrose inverse is given by
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(I-2kd"DD") MU~V 2, = (1+ 12k2d‘ka" DD’)(I Vo 2.)
I~V on + —2%__ ppr

1

1—-2kd"
This shows that
_ t At — t 2kd t
T, = V,A V, V,,V2,,+ Y VDDV
_ (Nin_npin) (Nm npm)
N g‘l 1D in * n(1— de‘)[ﬁd Din '

where the second equality holds since V,f\/—p—,,= 0.
Now it remains to show that 7, has the limiting xz(M —1) distribution. Let
A2 Ay=2--2A=0 be the eigenvalues of A and let e, e, ...,ey be the corresponding

eigenvectors such that efe;=¢; where &, is the Kronecker delta. By the orthogonality

between mm and DD', it is easy to show that 1= =Ay_o=1, Ay 1=1—-2kd"
and Ay=0. Let E=(e,..,ey) and A= diag(4,,..,Ay). Then, by the spectral
decomposition, A= EAE" and its Moore-Penrose inverse is given by A" =EA"E' where
A" is a matrix obtained by replacing the nonzero elements of / by their reciprocals. Define
U,=(A")E'V,. Since V, has the limiting N,(0,A) distribution by Lemma 1, U, has
the limiting Ny (0, diag ({4_1,0)) distribution by continuous mapping theorem. This shows
that T,= U, U, has the limiting ¥*(M—1) distribution, which completes proof, ]

3. Application and Simulation

In this section, we provide an illustrative example of application to ‘bone data’ presented in
p.34 of Johnson and Wichern (1992). The first two variables, the mineral content of the
dominant and nondominant sides of radius, are examined for multivariate normality. We
compare the asymptotic p-values of the Rao-Robson chi-square test statistic with those of
the Pearson statistic. We then provide a simulation study to check the accuracy in finite
samples of the limiting distribution of the Rao—Robson statistic.

Since ‘bone data’ contain 25 cases, the number M of intervals we consider are 3, 4, 5 and
both equiprobable and unequally probable ways of forming intervals are considered. We
consider only the equiprobable intervals for M=5 since some of unequally probable intervals
have expected cell counts less than 5. Chi-square values and their asymptotic p-values of
Pearson and Rao-Robson statistics are summarized in Table 1.

Here, the asymptotic p-values of the Pearson chi-square statistic are reported as

(the p-value of x*(M—2), the p-value of ¥(M—1))
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Table 1. Chi-square values and their asymptotic p-values

M /. chi-square type | chi-square value p-value

1 11 Pearson 2.96 (.0853, .2276)

3 3°3°3 Rao—Robson 7.84 0199
L 22, Pearson 10.7 (.0011, .0047)

555 Rao-Robson 13.78 0010
(1 111, Pearson 5.24 (.0728, .1550)

4 474744 Rao-Robson 9.63 0220
(L 1.3 3, Pearson 16.53 (.0003, .0009)

5571010 Rao-Robson 21.72 .0001
5 | (L1111, Pearson 17.2 (.0006, .0018)

5'5'5°5°5 Rao-Robson 27.73 0001

since the limiting distribution of the statistic is between Y*(M—2) and x*(M—1). From
these tables, we can find that the unequally probable cases have smaller p-values than the
corresponding equiprobable cases. This phenomenon is observed since those cases we choose
are the same as in Park (1999) where we need to show that unequally probable intervals
might have more power than equiprobable intervals. We can conclude that the Rao-Robson
chi-square statistic is more powerful since it reports smaller p-value than the Pearson
statistic.

To study the accuracy in finite samples of the limiting distribution of the Rao-Robson
statistic for those cases we consider, we perform a small simulation study. Our simulation
scheme is simple: we generate 1000 samples of size 25 from N,(0,7) and then calculate their
Rao-Robson statistic values for those cases we consider. We do not need to consider other
populations with u#0 and X+, since R; and hence the test statistic are ancillary (see

Lemma 3.1 of Park (1999) for details). We use the informal chi-square probability plot to
check whether the statistic values are from the chi-square distribution with appropriate
degrees of freedom. The chi-square probability plots are given in Figure 1.

Each row of the plots corresponds to the number of intervals: the first row is for M=3

and the second and third are for M=4 and M=15, respectively. Each column of the plots
represent the way of forming intervals: the first column is for the equiprobable intervals and
the second is for the unequally probable. We provide the reference line with intercept 0 and
slope 1. This line represent ‘ideal’ case where the chi-square values coincide with those
expected from their limiting distribution. From the figures, we can find that the points of plots
for the equiprobable intervals are a little bit closer to the reference line than those for
corresponding unequally probable intervals. We can also find that the chi-square approximation
is fairly good except for those plots with M=3 where we can discover some discreteness of

values.
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Figure 1. Chi-square probability plots
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