• Title/Summary/Keyword: multivariate density estimation

Search Result 14, Processing Time 0.029 seconds

Monte Carlo Estimation of Multivariate Normal Probabilities

  • Oh, Man-Suk;Kim, Seung-Whan
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.4
    • /
    • pp.443-455
    • /
    • 1999
  • A simulation-based approach to estimating the probability of an arbitrary region under a multivariate normal distribution is developed. In specific, the probability is expressed as the ratio of the unrestricted and the restricted multivariate normal density functions, where the restriction is given by the region whose probability is of interest. The density function of the restricted distribution is then estimated by using a sample generated from the Gibbs sampling algorithm.

  • PDF

Optimal Designs for Multivariate Nonparametric Kernel Regression with Binary Data

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.243-248
    • /
    • 1995
  • The problem of optimal design for a nonparametric regression with binary data is considered. The aim of the statistical analysis is the estimation of a quantal response surface in two dimensions. Bias, variance and IMSE of kernel estimates are derived. The optimal design density with respect to asymptotic IMSE is constructed.

  • PDF

Development of MKDE-ebd for Estimation of Multivariate Probabilistic Distribution Functions (다변량 확률분포함수의 추정을 위한 MKDE-ebd 개발)

  • Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.55-63
    • /
    • 2019
  • In engineering problems, many random variables have correlation, and the correlation of input random variables has a great influence on reliability analysis results of the mechanical systems. However, correlated variables are often treated as independent variables or modeled by specific parametric joint distributions due to difficulty in modeling joint distributions. Especially, when there are insufficient correlated data, it becomes more difficult to correctly model the joint distribution. In this study, multivariate kernel density estimation with bounded data is proposed to estimate various types of joint distributions with highly nonlinearity. Since it combines given data with bounded data, which are generated from confidence intervals of uniform distribution parameters for given data, it is less sensitive to data quality and number of data. Thus, it yields conservative statistical modeling and reliability analysis results, and its performance is verified through statistical simulation and engineering examples.

Marginal Likelihoods for Bayesian Poisson Regression Models

  • Kim, Hyun-Joong;Balgobin Nandram;Kim, Seong-Jun;Choi, Il-Su;Ahn, Yun-Kee;Kim, Chul-Eung
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.381-397
    • /
    • 2004
  • The marginal likelihood has become an important tool for model selection in Bayesian analysis because it can be used to rank the models. We discuss the marginal likelihood for Poisson regression models that are potentially useful in small area estimation. Computation in these models is intensive and it requires an implementation of Markov chain Monte Carlo (MCMC) methods. Using importance sampling and multivariate density estimation, we demonstrate a computation of the marginal likelihood through an output analysis from an MCMC sampler.

ROBUST $L_{p}$-NORM ESTIMATORS OF MULTIVARIATE LOCATION IN MODELS WITH A BOUNDED VARIANCE

  • Georgly L. Shevlyakov;Lee, Jae-Won
    • The Pure and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • The least informative (favorable) distributions, minimizing Fisher information for a multivariate location parameter, are derived in the parametric class of the exponential-power spherically symmetric distributions under the following characterizing restrictions; (i) a bounded variance, (ii) a bounded value of a density at the center of symmetry, and (iii) the intersection of these restrictions. In the first two cases, (i) and (ii) respectively, the least informative distributions are the Gaussian and Laplace, respectively. In the latter case (iii) the optimal solution has three branches, with relatively small variances it is the Gaussian, them with intermediate variances. The corresponding robust minimax M-estimators of location are given by the $L_2$-norm, the $L_1$-norm and the $L_{p}$ -norm methods. The properties of the proposed estimators and their adaptive versions ar studied in asymptotics and on finite samples by Monte Carlo.

  • PDF

How to Measure Nonlinear Dependence in Hydrologic Time Series (시계열 수문자료의 비선형 상관관계)

  • Mun, Yeong-Il
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.641-648
    • /
    • 1997
  • Mutual information is useful for analyzing nonlinear dependence in time series in much the same way as correlation is used to characterize linear dependence. We use multivariate kernel density estimators for the estimation of mutual information at different time lags for single and multiple time series. This approach is tested on a variety of hydrologic data sets, and suggested an appropriate delay time $ au$ at which the mutual information is almost zerothen multi-dimensional phase portraits could be constructed from measurements of a single scalar time series.

  • PDF

An Optimality Criterion for Median-unbiased Estimators

  • Sung, Nae-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.2
    • /
    • pp.176-181
    • /
    • 1990
  • Sung [1990] presented an analogue of the classical Cramer-Rao inequality for median-unbiased estimators with continuous multivariate densities depending upon a vector parameter. In the process, diffusivity, a new dispersion measure relevant to median-unbiased estimators, was defined to be a function of median-unbiased estimator's density height. In this paper we shall elaborate these ideas by defining a second kind of diffusivity and discuss the role of model-unbiasedness in median-unbiased estimation in connection with this seconde kind of diffusivity. In addition, median-unbiased estimation will be compared to mean-unbiased estimation.

  • PDF

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

Reject Inference of Incomplete Data Using a Normal Mixture Model

  • Song, Ju-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.425-433
    • /
    • 2011
  • Reject inference in credit scoring is a statistical approach to adjust for nonrandom sample bias due to rejected applicants. Function estimation approaches are based on the assumption that rejected applicants are not necessary to be included in the estimation, when the missing data mechanism is missing at random. On the other hand, the density estimation approach by using mixture models indicates that reject inference should include rejected applicants in the model. When mixture models are chosen for reject inference, it is often assumed that data follow a normal distribution. If data include missing values, an application of the normal mixture model to fully observed cases may cause another sample bias due to missing values. We extend reject inference by a multivariate normal mixture model to handle incomplete characteristic variables. A simulation study shows that inclusion of incomplete characteristic variables outperforms the function estimation approaches.

Probabilistic Power Flow Studies Incorporating Correlations of PV Generation for Distribution Networks

  • Ren, Zhouyang;Yan, Wei;Zhao, Xia;Zhao, Xueqian;Yu, Juan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.461-470
    • /
    • 2014
  • This paper presents a probabilistic power flow (PPF) analysis method for distribution network incorporating the randomness and correlation of photovoltaic (PV) generation. Based on the multivariate kernel density estimation theory, the probabilistic model of PV generation is proposed without any assumption of theoretical parametric distribution, which can accurately capture not only the randomness but also the correlation of PV resources at adjacent locations. The PPF method is developed by combining the proposed PV model and Monte Carlo technique to evaluate the influence of the randomness and correlation of PV generation on the performance of distribution networks. The historical power output data of three neighboring PV generators in Oregon, USA, and 34-bus/69-bus radial distribution networks are used to demonstrate the correctness, effectiveness, and application of the proposed PV model and PPF method.