REAREFERARANE

F308 B6YE - 19974 12)]

pp. 641 ~648

AAIE TEXtz2] H|ME A2

How to Measure Nonlinear Dependence in Hydrologic Time Series

*
o ol
o =

Mo

Moon, Young-Il

Abstract

Mutual information is useful for analyzing nonlinear dependence in time series in much the
same way as correlation is used to characterize linear dependence. We use multivariate
kernel density estimators for the estimation of mutual information at different time lags for
single and multiple time series. This approach is tested on a variety of hydrologic data sets,
and suggested an appropriate delay time T at which the mutual information is almost zero
then multi-dimensional phase portraits could be constructed from measurements of a single

scalar time series.
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1. Introduction

It is common to find in a time series of
hydrologic data that an observation at one
time period is strongly dependant with the
in the preceding time period.
Correlation function is frequently used to
quantity this The
function hitherto measures only the

observation
dependence. correlation
linear
dependence, which may be sufficient in most
situations to explain the dependence. but in

general it 1is desirable to consider also
nonlinear  relationships between different
variables. Given that there are feedbacks and

interactions between hydrologic processes it is
of interest to look for a measure of nonlinear
dependence. The motivation for considering

the mutual information is its capability to

measure a general dependence between two
variables. If the two variables are independent
then the mutual information between them is
zero. However, if the two variables are strongly
then the

between them is large. The mutual information

dependent mutual  information

measures the general dependence of two
variables while the correlation function measures
the linear dependence. For example, there is a
strong evidence of a nonlinear association
between nutrient level and the number of fish

in Figure 1.

Note that the strength of the linear
relationship is almost zero (1. e. r2=0), but
the mutual information shows a strong

relationship between the variables. Therefore,
mutual information provides a better criterion
for the measure of the dependence between
variables than the correlation function.. A
detailed investigation of the advantages of the

mutual information versus the correlation
function is contained in Li(1990).
Another objective of mutual information

(M.I.) analysis is to measure how dependent
the values of x(¢+71) are on the values of x(¢)
where T is a delay time. There has been a

growing interest in phase-portrait recon-
struction from time series data in flelds as
1996:

1996) and hydrodynamics

diverse as hydrology (Moon and Lall,
Abarbanel
(Brandstater et al., 1983). If we can get an

et al.,

appropriate delay time T at which the mutual
then multi-

could be
constructed from measurements of a single

information 1s almost zero

dimensional  phase  portraits

scalar time series. In this approach portraits
are constructed by expanding a scalar time
series x(#) into a vector time series X (#) using
time delays ©: X(8) = {xi(8. 200, x3(D. ...
xM(D}, where xM(#) = x(t++M7). If the delay
time is too small, the reconstructed attractor

is restricted to the diagonal of the

Number of Fish
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Fig. 1. Data on Fish Population vs. Nutrients
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reconstruction space because x(f) and x({+7)
will basically be the same. On the other hand
if T is chosen too large then the attractor
coordinates are uncorrelated and the system is
Thus, all
space

information for
lost

chaotic. relevant
phase

neighboring trajectories diverge, and averaging

reconstruction is since
in time and/or space is no longer useful.

No criteria for choosing T exists in literature
until Fraser and Swinney (1986) proposed the
use of mutual information (M.I.) as a criterion
for choosing 7 and argue that this provides an

P

excellent criterion for choosing T in most
systems. They suggest that value of T produce
the first local minimum of mutual information.
This choice is better than choosing © as the
lag at which autocorrelation function (ACF)
first passes through zero. as the ACF only
measures the linear dependence, while the M.I.
measures the general dependence of two
variables and hence provides a better criterion
(Graf and Elbert, 1990) for the choice of <.
Fraser and Swinney (1986) developed the use
of multivariate histogram for the estimation of
M.IL

propose the use of nonparametric multivariate

and subsequent choosing of T. Here we

kernel density estimator for the estimation of
MI. Our show that this is
particularly advantageous with small data sets.

investigations

2. Definition of the Mutual Information

Mutual
1986)
dependence between two variables.

Information (Fraser and Swinney.
measure  of
Let wus
denote the time series of the two variables as
and q1. g2 ...q;. ...qu.
n is the record length, and the sampling rate @
t is fixed. The mutual

provides a  general

S1, S2, ...Si, ...Sn. where

information between
observations s; and ¢; is defined in bits as:

M[S,q(si' q]_) — 10g Z(M )

P(s)Pa,) (D

where Ps.(si.g;) is the joint probability density

F3042 H64E 19974 124

of s and g evaluated at (s;, ¢;), and Ps(s;) and
P,(g;) are the marginal probability densities of
s and ¢ evaluated at s; and ¢, respectively.
Where overall dependence between the two
series is of interest, one «can define
(analogously to linear correlation) the Average

Mutual Information L., as:

. jig(sz'v Qj) .
Is'q_ ;jPS'[I(S[’ 4/) log 2( Ps(si)Pq( ‘Ij) ) (Z)
This measure is wuseful for identifying

components in multivariate sampling that seem

to be related or independent. A particular
recent use (Martinerie et al.. 1992. Abarbanel.
19941 Gao, 1994) is the choice of an appropriate
delay parameter while reconstructing a state
space from an experimental time series.

Kernel density estimation is a nonparametric
method for estimating probability densities.
from the statistical literature
1986, Devroye and Gyofi. 1985:

Scott, 1992) that kernel density estimates can

We learn
(Silverman,

be superior to the histogram in terms of (1)
better Mean Square Error rate of convergence
of the estimate to the underlying density, (2)
insensitivity to the choice of origin, and (3)
ability to specify more sophisticated window
than the
“binning” or frequency counting.

shapes rectangular window for
A Kkernel density estimate (KDE) of a vector

y is given (Silverman. 1986) as:

() =-L3 K 3)
=1
where
po— _'1‘ 1 J—
y— (y=v) 52 (y—y) )

where, K (u) is a multivariate kernel function.,
y=0.ys..va)" is the d dimensional random
vector whose density is being estimated: y; =
Wiive....vail'. i=1 to n are the n sample
vectors, k£ is the kernel bandwidth and S is
the covariance matrix of the y;. The kernel

643



Table 1. Description of Data Sets Used.

Data from
AR(1) model

500 data points were generated from the AR (1) model: x;= ox;-1 +V 1—0*N(1,0)
where N(0,1) refers to a standard Gaussian density and ©0=0.85.

GSL Monthly
Volume data

Monthly volume of Great Salt Lake (GSL) for the period from Nov. 1847 to Dec. 1996.

Southern
Oscillation
Index (SOD

Monthly mean difference in Sea Level Pressure (SLP) at Tahiti and Darwin from Sep.
1932 to Nov. 1993, 735 data points. SOI = SLP(Tahiti)-SLP(Darwin)

function K(u) is required to be a valid

probability density function. In this paper we

use the multivariate Gaussian probability

density function for K (%) which is given as,

Kluw)= 7z exp( - uf2)  (5)

1
(2m) "h? det( S)
An evaluation of K (u#) represents the weight
given to an observation v, that is based on
distance between v and yi.
here

The distance used
is the Euclidean distance modified to
recognize the covariance in the co-ordinates.
We can see from (3) that the kernel estimator
is a local weighted average of the relative
frequency of observations in the neighborhood
of the point of estimate. The kernel function,
K () prescribes the relative weights. and %
prescribes the range of data values over which
the average is computed. The role of the
covariance matrix S is to recognize possible
linear dependence amongst the coordinates. Its
use allows one to appropriately orient the
resulting kernel function and vary the bin
width in proportion to the scale of variation in
the rotated coordinates.

There are many methods for choosing the
bandwidth 4. Some of the best ones in the
statistical literature are due to Sheather and
Jones (1991), for d=1, and Wand and Jones
(1994) for d=2. The computational burden
associated with these and other data driven,
automatic  bandwidth
formidable. Here we made an expedient choice
of the bandwidth as the one that minimizes
the mean integrated square error (MISE) in

selectors can  be

644

(¥) if the underlying distribution is assumed
to be multivariate Gaussian. While this is not a
theoretically satisfying choice, its performance in
our tests was comparable, and computation time
was orders of magnitude lower than the more
The “optimal” Gaussian
bandwidth corresponding to the kernel choice
in (5), is given by Silverman (1986) as:

rigorous  choices.

_ 4 1(d+1), —1/(d+4)

3. Data Sets

In order to demonstrate the application of
the KDE to estimation of M.I. and the sub-
sequent picking of the optimal delay time =,
one simulated time series and two real time
series are chosen. The details of the data sets
are given in Table 1.

4. Results and Conclusion

The mutual information is calculated for up
to lags 100 for each of the data sets using the
KDE and ACF up to 100 lags is also calculated
for the data sets. Moon et al. (1995) estimated
the M.I. for several simulated data sets using
the histogram method (FSH) of Fraser and
Swinney (1986) for comparison with the KDE
approach. They represent that KDE provides
an attractive alternative to the FSH method
for estimating the average sample mutual
information. Our results are consistent with
these reported in Moon et al. (1995). For
selected cases, it was possible to analytically

compute the requisite probabilities and use
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Fig. 2(a). AR(1) data
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Fig. 2(b). I, ., . from KDE and from fitted Gaussian densities for the AR(1) data.

them to derive the expected sample estimates
of I, x;,-.. In these cases, we found that the
KDE estimates were numerically quite close to
those from the analytical expressions.

The results for the data from AR(1) model is
shown in Figure 2. Note that for an AR model
the joint and marginal densities, P, x;—.( ).
P. (), all
Gaussians and hence I, x; . can be calculated
directly by fitting Gaussian distributions to

and P, (- )respectively are

the data. From Figure 2, we observe that
there is little difference in the analytical and
KDE estimates of I, x,—, The lag ™ would
be selected as 11 from KDE and from the
analytical expression.

In Figure 3(a) and (b). GSL data and ACF
of GSL monthly volume data is shown. The M.I.

0% HOYE 19974 12/]

for KDE suggests a lag of 7 for T in Figure 3(b).
The next data set we considered Southern
Oscillation Index (SOD). Figure 4(a) presents the
data of Southern Oscillation Index(SOI) time
series. In Figure 4(b), ACF of Southern Oscillation
Index (SOID) is shown. The mutual information of
KDE shows that the first minimum is at the lag
of 11 months in Figure 4(c).

The purpose of the experiment was to test
the multivariate kernel density
(KDE) for picking the optimal delay time 7
and to compare its performance with Fraser
and Swenney histogram (FSH) (1986). The
mutual information of Fraser and Swenney
histogram (FSH) dose not seem consistent
(Moon et al., 1995). It may be from the
histogram drawback about the choice of bin

estimator
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Fig. 3(a). Great Salt Lake monthly volume time series.
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Fig. 3(b). ACF of Great Salt Lake monthly volume time series.
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Fig. 3(c). I,, ,, . of KDE for the Great Salt Lake monthly volume time series.

width which, primarily. controis the amount of
The
usefulness of the nonparametric multivariate

smoothing inherent in the procedure.

kernel density estimator in analyzing the

mutual information is shown. The nonpara-
metric multivariate kernel density estimator
(KDE) reliable  mutual

provides more
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information.

Another this
investigate the optimum delay time 1T for
If we know an

purpose for work was to
nonlinear hydrologic systems.
appropriate T then multidimensional phase
portraits can be constructed from a single

scalar time series.
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Fig. 4(a). Southern Oscillation Index(SOIl) time series.
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Fig. 4(b). ACF of Southern Oscillation Index(SOI
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Fig. 4(c). I, . . of KDE for the Southern Oscillation Index (SOI).
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