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Optimal Designs for Multivariate Nonparametric Kernel Regression
with Binary Data

Dongryeon Park!)

Abstract

The problem of optimal design for a nonparametric regression with binary data is
considered. The aim of the statistical analysis is the estimation of a quantal response
surface in two dimensions. Bias, variance and IMSE of kernel estimates are derived.
The optimal design density with respect to asymptotic IMSE is constructed.
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1. Introduction and the estimator

Let us consider a situation where the outcome of an experiment is dichtomous, response or
nonresponse. In quantal bioassay, dose levels of a substance are selected, and experimental
animals are administered the substance at each dose level. After a fixed period of time, the
animal has responded in some way and the response can be classified into two categories,
response or nonresponse, for example dead or alive. Suppose we want to test the strength of
some material. The impact of testing material at various impact levels constitutes an
experiment. The outcome of the experiment is either "break” or "not break”. In educational
testing, one may want to determine the difficulty level of the test item. The independent
variable is the difficulty level of the test item in some scale, and the outcome of the
experiment is right or wrong answer.

In the experiment, the observed reaction Y; of the ith subject at stimulus level

x; (i=1,...,n) is encoded by Y ;=0 (if nonresponse) or Y ;=1 (if response) where x; is
a kX1 vector of independent variables, and we assume that Y; is a Bernoulli random
variable with parameter p( x;), i=1,..,.n. Here, p: R k—'(O,l) denotes the response
surface. Therefore the distribution of Y; is given by

Pr(Yi=1) = p( xi), Pr(Y;=0) =1 - p xi), i=1,..,n.
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The specification of the stimulus levels x; forms the design of the experiment. The aim

of the statistical analysis is the estimation of the surface p. A further assumption is that p
is continuous and 0<p(x)<1 for all x€Q

Sometimes, we have a fixed sample size available and must decide on the location of all the
design points x1, x2,-, in advance. If one uses a kernel-based estimate of p, then Muller

and Schmitt (1988) describe the asymptotically optimal design density in the one-dimensional
case. In most experiments, we have more than one independent variables, so extension to the
multivariate case is desirable. We consider only the two dimensional case in which the

design points x; lie in R 2, but the methods developed could be extended to higher

dimensions.

As an extension of the estimate proposed in Muller and Schmitt (1988) to the two
dimensional case, we define the kernel estimator

blz ng( 8 )asy (D

where b is a sequence of a positive bandwidths depending on n such that

Pl x)=

b— 0, nb?—> ® as n— ®
and where K is a kernel function, and where A; is a partition of € such that x;€A;
and UV A;=Q and A;nA ;=0 forall i#j where x1i,--, xn are the design points.

Assume 2=[0,1] 2 In addition we assume K(u) is continuous and has a compact support.
As in the one dimensional case, we assume that there is a strictly positive design density

fx) and we determine the design points using f x). We choose x1,-., xn such that

__1
J‘Aij(x)dx— 1
Therefore,
AA;='—1—, for some ai€A; (2)
nf a;)

where AA; is the area of A, so A ;=0(n "1y, Furthermore, we assume that

SUp iSUp ypeq llu-vll=0(n""?)

where 1!+ || is the Euclidean distance. This assumption restricts the shape of A;. For

example, suppose A; is a thin rectangle such that the height is 1 and the width is 1/n.
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Then AA:=1/n, but sup ,,eq4,llu-vll=1, so this assumption is not satisfied.

2. Asymptotic IMSE and Optimal Design

In this section, we compute the asymptotic IMSE of 3( x) and derive the optimal design
density. Let

I.={i: support K( x;- )ﬂAi#E}.

Note that #(Ix)=0(nb?) where #( -) denotes the cardinality. Let
Ai=A;n x+bS

where  S=support{ K). We can derive the expectation of p( x) using an integral

approximation.

Lemma 1

Ep(x)= blz LK( xl;-s )p(s)ds+0(n_w) where 2=[0,11%

Proof
The exact expectation of p( x) is

Ep(x)= blz ‘: L'K( xb—s )ds'p(xi)

Since supisup ez llu-vll=0(n™"%  and AA<#UID0(n™H=0(b% |
1€l

[Sintx0 [ K552 s [ {555 o]

gfr(p( x ) - pf s))K( xb—s )ds l
<sup;sup 4pezllu-vll- sup K(u)- ‘;‘A:‘Ti

o2

Using a Taylor series expansion, we can derive the bias of B( x).
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Lemma 2 Suppose that K(u) is such that fu;‘K( wdu=0 , i=12

and flu;llu;lK(u)du < © Pprali j=1, 2 where uT=(u1,uz). Then pr any

x€Q,

2
EB( x)-p(x)= 2= Q(p)(x)+0(b D +0tn )

where Q(p)( x)=f u'v p(x)uK(u) du

and where V 2p( x) is the Hessian matrix of the mixed second partials of p at x.

Proof

Let Q‘:[ xlb-l, );1 [ xzb—1’ xbz

The asymptotic expectation of B( x) is

blz ng( xb-s )p(s)ds = L_K(u)p(x-bu)du
2
= [ Kw(p(0-b u"vp(0)+ L= uT v p(x-bwuldu, 801

2
=p( x)+ b2 f u'v (x)uK(u)du+o(b?)

since K(u) has compact support and p is continuous. Therefore,

2
EP(x)-p(x)= b2 Q(p) x)+o(b)+0(n "),

Lemma 3

0%( x)

Var( p( x))= b 2f %)

JE*  wduro—r),  where o*(x)=p(0)(1-p(x).

Proof
From (1),

2
~ _ 1 & x-S 2 )
Var(B(x) = =7 3 [fAiK( = )ds] 0% x;)

By (2), for sufficiently large n,
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’Var( p(x) - n;" LKZ( xb—s) 0;(‘5) ds ‘

| Zem K (e k0 - g Ak —EEL) Ll

“nf zi)

—~—

; ‘Kz(

xX-w; ) 0% x)
b

X2 ) 0¥ z))
nf a;)

) Kz( b nf z:)

where wi, 2; € A4

Since K(x) and p(x) are continuous on the compact set, we can get

2
Var(p( x)) = ngz[ "ﬂ(x’)" V+o<1)] . where V = [KX wdu .
Therefore we arrive at
S x) - 2. 1 [ 0%x) Q%o x)
E(B(x) - plx)? = nbz[ e V+o(1)]+b [ ; +o(1)] (3)

We may integrate the MSE over [0,1]®  to get the IMSE.
0% x
. [Vfo—(—Lﬂ - dx+o(1)]

] (4)

Efo( pl x) - p(xN%dx =

The optimal global bandwidth b ° is obtained by minimizing (4) w. r. t. b:

2 1/6
2Vf ﬂ‘ ’)‘)
b= X (5)
n | Q%p) x)dx

and inserting this bandwidth into (4) yields

E[(B(x) - p(x)idx = n'%(c-[vf ;‘x’)" ]

x [quz(p)( x)d x| +o(1>) (6)

here ¢ = 273 + 228 The optimal design density based on (6) is given in the following.
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Theorem 1 The optimal design density w. r. t. asymptotic IMSE is given by

¥ p( x)(1-p(x)) (7)
fg\/p(y)(l-p(y))dy

ff(x)=

Proof
By (6), f is the solution of the following variational problem:

Find flx) such that £ x) minimizes

2
0g°( x) -
fq %) dx st Lﬂx) dx =1 and fx)>0 for all x€Q .

Therefore, we just can follow the proof of the theorem in Muller(1984), even though the
response is not binary in that article.

3. Discussion

According to (7), the asymptotic optimal design density f ( x) for the two dimensional
case has a similar functional form to the one dimensional case. In the one dimensional case,
when we select the optimal design points, we use the quantile function. However, there is no
clear definition of the percentile in two dimensions. Therefore, optimal design idea for the
univariate case can not be applied directly to the two dimensional case.

As in section 1, we wish to choose optimal design points such that

[, riodx = = (8)

However, there is no unique way to select optimal design points such that (8) is satisfied.
We may convert this problem into an optimization problem using a Voronoi Tessellation,
and this is done by Park(1995), but further investigation is needed.
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