• 제목/요약/키워드: multispectral data

검색결과 216건 처리시간 0.023초

The Extraction of End-Pixels in Feature Space for Remote Sensing Data and Its Applications

  • YUAN Lu;SUN Wei-dong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.136-139
    • /
    • 2004
  • The extraction of 'end-pixels' (i.e. end-members) aims to quantify the abundance of different materials in a single pixel, which becomes popular in the subpixel analysis for hyperspectral dataset. In this paper, we present a new concept called 'End-Pixel of Features (EPF)' to extends the concept of end-pixels for multispectral data and even panchromatic data. The algorithm combines the advantages of previous simplex and clustering methods to search the EPFs in the feature space and reduce the effects of noise. Some experimental results show that, the proposed methodology can be successfully used to hyperspectral data and other remote sensing data.

  • PDF

영역분류를 이용한 다분광 영상 데이터의 화소 단위 선형 예측 기법 (Linear Prediction of Multispectral Images Per Pel Using Classification)

  • 조윤상;구한승;나성웅
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 추계종합학술대회 논문집(4)
    • /
    • pp.163-166
    • /
    • 2000
  • In this paper, we will present a lossy data compression method for coding multispectral images. The proposed method uses both spatial and spectra] correlation inherent in multispectral images. First, band 2 and band 6 are vector quantized. Secondly, band 4 is estimated with the quantized band 2 using the predictive coding. Errors of band 4 are encoded at a second stage based on the magnitude of the errors. Thirdly, remaining bands are calculated with the quantized band 2 and band 4. Errors of residual bands are wavelet transformed and then we apply the SPIHT coding on the transformed coefficients. We classify classes without extra information transmitting and then use linear predictor. And errors can be encoded by SPIHT coding at any target rate we are want. It is shown that this method has better performance than FPVQ. Average PSNR rises 0.645 dB at the same bit rate.

  • PDF

저해상도 멀티스펙트랄 자료와 고 해상도 범색 영상 융합

  • 이상훈
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 춘계학술대회 논문집
    • /
    • pp.137-139
    • /
    • 2008
  • 본 연구에서는 고해상도의 panchromatic 영상을 이용하여 저해상도의 multispectral 영상을 고해상도로 재구축하는 방법을 제시하고 있다. 제안된 방법은 저해상도와 고해상도 간의 선형 모형 사용하여 실제의 spectral 값에 부합하는 고해상도 영상을 재구축하며 두 단계로 이루어 진다. 본 연구에서 제안 방법을 이용하여 IKONOS 1m RGB 영상 생성하였다.

  • PDF

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • 한국측량학회지
    • /
    • 제36권3호
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Ground-based Remote Sensing Technology for Precision Farming - Calibration of Image-based Data to Reflectance -

  • Shin B.S.;Zhang Q.;Han S.;Noh H.K.
    • Agricultural and Biosystems Engineering
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2005
  • Assessing health condition of crop in the field is one of core operation in precision fanning. A sensing system was proposed to remotely detect the crop health condition in terms of SP AD readings directly related to chlorophyll contents of crop using a multispectral camera equipped on ground-based platform. Since the image taken by a camera was sensitive to changes in ambient light intensity, it was needed to convert gray scale image data into reflectance, an index to indicate the reflection characteristics of target crop. A reference reflectance panel consisting of four pieces of sub-panels with different reflectance was developed for a dynamic calibration, by which a calibration equation was updated for every crop image captured by the camera. The system performance was evaluated in a field by investigating the relationship between com canopy reflectance and SP AD values. The validation tests revealed that the com canopy reflectance induced from Green band in the multispectral camera had the most significant correlation with SPAD values $(r^2=0.75)$ and NIR band could be used to filter out unwanted non-crop features such as soil background and empty space in a crop canopy. This research confirmed that it was technically feasible to develop a ground-based remote sensing system for assessing crop health condition.

  • PDF

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF

Evaluating the Performance of Four Selections in Genetic Algorithms-Based Multispectral Pixel Clustering

  • Kutubi, Abdullah Al Rahat;Hong, Min-Gee;Kim, Choen
    • 대한원격탐사학회지
    • /
    • 제34권1호
    • /
    • pp.151-166
    • /
    • 2018
  • This paper compares the four selections of performance used in the application of genetic algorithms (GAs) to automatically optimize multispectral pixel cluster for unsupervised classification from KOMPSAT-3 data, since the selection among three main types of operators including crossover and mutation is the driving force to determine the overall operations in the clustering GAs. Experimental results demonstrate that the tournament selection obtains a better performance than the other selections, especially for both the number of generation and the convergence rate. However, it is computationally more expensive than the elitism selection with the slowest convergence rate in the comparison, which has less probability of getting optimum cluster centers than the other selections. Both the ranked-based selection and the proportional roulette wheel selection show similar performance in the average Euclidean distance using the pixel clustering, even the ranked-based is computationally much more expensive than the proportional roulette. With respect to finding global optimum, the tournament selection has higher potential to reach the global optimum prior to the ranked-based selection which spends a lot of computational time in fitness smoothing. The tournament selection-based clustering GA is used to successfully classify the KOMPSAT-3 multispectral data achieving the sufficient the matic accuracy assessment (namely, the achieved Kappa coefficient value of 0.923).

인공위성 영상 자료를 이용한 북한 지역의 간척지 조사 (Survey for Reclaimed Lands in Western Coast of North Korea using Satellite Image data)

  • 신석효;김상철;안기원;김남식
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 춘계학술발표회논문집
    • /
    • pp.251-257
    • /
    • 2004
  • The Electro-Optical Camera(EOC) image of the first Korea Multi-Purpose Satellitel(KOMPSAT-1) has both high resolution and convenient acquisition of research data, but on the other hand it has a defect of one band image. Fortunately, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data are receiving every day at the Korea Aerospace Research Institute (KARI). Therefore, this paper performed an effective merging for survey of reclaimed land using the high-resolution (6.6m) KOMPSAT-1 EOC image and the multispectral MODIS image data. According this paper prepared map of reclaimed lands in Western Coast of North Korea as quantitative(position and form) survey of reclaimed lands of North Korea using merged image. The use of KOPSAT-1 EOC image and MODIS images was found to be economical such using of large scale areas as reclaimed land or according easy to collect information and such north korea as inaccessible areas like as receiving every day.

  • PDF

웨이브릿 변환 및 선택적 예측 벡터 양자화를 이용한 다분광 화상데이타 압축 (Multispectral image data compression using wavelet transfrom and selective predicted vector quantization)

  • 김병주;반성원;김경규;정원식;김영춘;이건일
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.673-676
    • /
    • 1998
  • Future land remote sensing satellite systems will kikely be constrained in terms of communication band-width. To alleviate this limitation, the data must be compressed. Image data obtained from satellite exhibit a high degree of spatial and spectral correlations that must be properly exploited. In this paper we propose multispectral image data compression using wavelet transform and selective predicted vector quantization. Th eproposed method is based on accuratly predicting other band from reference band and reducing bit rate through threshold map. we can achieve better compression effeciency than conventional methods.

  • PDF

Rough 집합 이론을 이용한 원격 탐사 다중 분광 이미지 데이터의 특징 추출 (Features Extraction of Remote Sensed Multispectral Image Data Using Rough Sets Theory)

  • 원성현;정환묵
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.16-25
    • /
    • 1998
  • 본 논문에서는 초 다중 밴드 환경의 효과적인 데이터 분류를 위해서 Roungh 집합 이론을 이용한 특징 추출 방법을 제안한다. 다중 분광 이미지 데이터의 특성을 분석하고, 그 분석 결과를 토대로 Rough집합이론의 식별 능력을 이용하여 가장 효과적인 밴드를 선택할 수 있도록 한다. 실험으로는 Landsat TM으로부터 취득한 데이터에 적용시켰으며, 이를 통해 전통적인 밴드 특성에 의한 밴드 선택 방법과 본 논문에서 제안하는 러프 집합 이론을 이용한 밴드 선택 방법이 일치됨을 보이고 이를 통해 초다중 밴드 환경에서의 특징 추출에 대한 이론적 근거를 제시한다.

  • PDF