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Abstract: The extraction of “end-pixels” (i.e. end-members)
aims to quantify the abundance of different materials in a single
pixel, which becomes popular in the subpixel analysis for
hyperspectral dataset. In this paper, we present a new concept
called “End-Pixel of Features (EPF)” to extends the concept of
end-pixels for multispectral data and even panchromatic data.
The algorithm combines the advantages of previous simplex and
clustering methods to search the EPFs in the feature space and
reduce the effects of noise. Some experimental results show that,
the proposed methodology can be successfully used to
hyperspectral data and other remote sensing data.
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1. Introduction

In recent years, hyperspectral imaging technique has
become one of the most powerful tools in many
application areas, such as environmental monitoring,
natural resources exploiting and agriculture. Now, spectral
information can be obtained through a great number of
spectral bands from a few to several hundreds. How to
extract the interesting features from the multi-dimensional
hyperspectral data more efficiently, is very important for
the identification and detection of the individual materials.

Linear spectral unmixing is one of the most important
approaches for the analysis and classification of
multi/hyperspectral datasets. This approach involves two
steps: to find spectrally unique signatures of pure ground
components (usually referred to as end-pixels or
end-members [10]) and to express individual pixels as a
linear combination of end-pixels [5]. Let s(x, y) be a
spectrum of values obtained at the sensor for a certain
pixel with spatial coordinated as an N-dimensional vector
(where N is the number of spectral bands) and may be
modeled in terms of a linear combination of several
end-pixel vectors e, i = 1,..., k, according to the equations
and constraints [2].
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where k is the number of end-pixels needs to accurately
model the original spectrum, ¢; is the scalar value
representing the fractional coverage of end-pixel vector e;
in pixel (x, ), and € is Gaussian random error. The ideal
case is that the coefficients in the linear combination are
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nonnegative and sum to 1, being, therefore, interpretable
as cover functions or abundances. Once these end-pixels
are extracted, they provide a basis set, in whose terms the
rest of the data can be described, and moreover the basis
set gives a more “physical” description of data without the
orthogonalization restriction compared with the principle
components.

Several autonomous techniques for finding these
end-pixels in the hyperspectral data are currently proposed,
such as PPI [7], Orasis [6], MEST [3], MESMA [13] and
IEA [14]. In these approaches, there are two funda-
mentally different models. (1) The N-FINDR algorithm
[15] finds the simplex of maximum volume that can be
enclosed within all of the pixels. (2) The SEM algorithm
[11] uses a stochastic technique for characterizing spectral
classes of all the multidimensional data. Although the two
methods can achieve very similar qualities in a global
sense [4], both still exist differences in applicability of
each model. The simplex approaches can generally find
the purest end-pixels even including abnormal end-pixels
from image, but the results are sensitive to the noise. The
stochastic approaches are robust to noise, but the extracted
end-pixels are usually combined with mixture pixels.
Therefore, a hybrid solution is required to extract the
purest end-pixels and reduce the effects of noise. In
addition, many of previous works are only limited for
hyperspectral data and focus exclusively on the spectral
nature of the data. Available analysis techniques do not
usually take into account the information related to the
spatial context, which is useful to improve the quality of
the extracted end-pixels.

In this paper, in order to extending the concept of end-
pixels for multispectral data and even for panchromatic
data, a new concept called “End-Pixel of Features (EPF)”
which is defined in the feature space is given, and an
extraction method of EPFs based on the geometric
characteristics of feature points is proposed to find a set of
more pure EPFs in the feature space. In this method, all
pixels in the image space are mapped into the feature
space at first, then some candidates of EPFs will be
selected which are centers of each group of extreme points
with higher similarity in the feature space, finally a similar
searching approach as N-FINDR is adopted to find the
EPFs consisting a convex set with the largest volume.
Some experimental results using real data sets show that,
this new method is robust to the abnormal noise, and can
be used not only in the analysis of hyperspectral data but
also other kinds of remote sensing data.
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2. Definition, Searching and Unmixing
Algorithms of EPFs

This section is organized as follows. Subsection 1)
introduces the concept of end-pixel of features which
extends the definition of end-pixels for hyperspectral data.
Subsection 2) focuses on the operations to project each
pixel in original images into the determined feature space.
Subsection 3) demonstrates the searching procedure of
end-pixels of features in the feature space. Finally in
subsection 4), a similar unmixing algorithm is proposed.

1) Definition of End-pixel of Features (EPF)

The analysis of hyperspectral data sets requires the
determination of certain basis spectra called “end-pixels”,
which represent spectrally unique signatures of pure
ground components. Moreover, it is very important for
other kinds of remote sensing data sets, including
multispectral and panchromatic image, to identify a set of
reference signatures to model the spectral nature at each
pixel. In fact, previous simplex approaches based on the
originally spectral space (or image space) can hardly be
used to other remote sensing data beyond hyperspectral
data directly, for the small number of their spectral bands
is not often sufficient to the computation of end-pixels
extraction.

A very useful technique comes from spectral clustering
algorithm [1]{15], which relies on the eigenstructure of a
similarity matrix to partition points into disjoint clusters,
with point in the same cluster having high similarity and
points in different clusters having low similarity. In fact,
this approach is available to obtain features of each pixel
through the spatially spectrum information from its
neighbor pixels. Therefore, each pixel in the originally
spectral space would correspond to a feature point. Here,
the space consisting of all these feature points is called
“feature space”, where the dimensions of feature space
can be set to be larger or smaller than original ones. This
advantage would make it possible to search the end-pixels
in the feature space through original simplex methods. As
a rule, those feature points are defined as “end-pixel of
features (EPF)”.

2) Feature Space Projection

Our algorithm begins with the procedure of achieving
the feature space for the input remote sensing datasets.
Then each pixel in original spectral space will be mapped
to a point in the determined feature space. As we known,
the procedure requires to calculate the similarity matrix
for all samples, which costs much computation. Here, we
propose an accelerated implementation based on the
downsampling method described as follows:

Given original dataset S={s,L ,s,}, and set the

number of clusters to X:
1. A training subsetS’={s.L ,s

’

}can be obtained by

"
downsampling the dataset S and the rest pixels compose
the test subset P={p,,L ,p,}, whereS'"UP=8,8' "P=Q.
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Fig.1 Geometrical interpolation of a mixture model based on
EPFs in two-dimensional feature space
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2. The training similarity matrix Ae can be

calculated by 4, = exp{—"s; - ”2 / 252} and the test

similarity matrix Te " «can be defined as

T, =exp{—"pi—s'j"2 /202}. When two spatially distant

pixels are computed, A, and7, are both set to zero.

3. Let each element (i, ) of a diagonal matrix D be the
sum of the i-th row of A, and let each element (j, j) of a
diagonal matrix F be the sum of the j-th row of T. Here,
we define a Laplacian matrix L = D"/?AD™2,

4. Compute the former K largest eigenvalues and
corresponding eigenvectors of L, which construct an
eigenmatrix V=[v,,L ,v,] and a diagonal matrix

A =diag (AL A ).

5. Calculate the features of all training samples
Z, =D’V and calculate the features of all testing
samples Z, =F /*TD""*VA to obtain the features of all
samples z = [2,:2,].

3) Searching EPFs

This procedure is initialized by a random set of feature
points as end-pixels of features. In order to refine the
estimate of EPFs, the volume must be calculated with
each point in place of each EPFs. The volume (V) of the
simplex formed by using the EPF estimation is
proportional to the determinant of E:

VE) 1 b 1 1 L 1
= A)
k-D1""lle, e L e

3)
)

A trail volume is calculated for every point in each EPF
position by replacing that EPF and recalculating the
volume. If the replacement results in an increase in

-137-



(b)The fractional abundance
map of mountains

(a) The original TM image
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(d) 2-D feature space and the
two extracted EPFs

Fig.2 The Experimental results of multi-channels TM image

the point will replace the EPF. This procedure is repeated
until there are no more replacements of EPFs. We remove
these extracted EPFs from the feature space and continue
to find the largest volume among the rest points until ¢
largest volumes with different vertices are found. For each
vertex of simplex, some points very near to the ¢
candidate EPFs are all used to estimate the centroid of the
vertex cluster, which becomes the final EPF at the vertex.

For instance, a simple mixture model based on three
end-pixels of features has the geometrical interpretation of
a triangle whose vertices are the EPFs, shown in Fig.l.
Each EPF is determined by the centroid of all candidate
points near the vertex. Cover functions are determined by
the position of spectra within the triangle and can be
considered relative coordinates in a new reference system
given by the EPFs.

4) Unmixing with the EPFs

Once the pure pixels are found and original pixels are
given, their spectra can be used to unmix the original
image. For the linear mixture model, the goal is to find

abundances ¢ to minimize ”5—Ec”2 , subject to the

sum-to-one and positivity constraints [9]. The QP method

offers the fully constrained solution to the estimation

problem and can be described as follows:
minimize (cTETEc -2 -sTEc)

= 4
subjecttol"e =1, and¢, 20, i=1L ,k

where I=[1,1,L ,1] . To solve the above problem

numerically, firstly, an initial feasible solution is
calculated. Then an iterative procedure is taken to
generate a series of feasible points that converge to the
solution. The implementation of QP algorithm is beyond
this paper, more details are described in [8].

3. Experiments and Discussions

The end-pixel of feature extraction algorithm can
provide good results on images with a wide variety of
remote sensing dataset. Here as some of the experiments,
our method is applied to one real multi-channels satellite
image and one hyperspectral image.

The multi-channels image is produced by previous three
bands of TM satellite data. Ground surface in this test
region is very abundant, however we are interested only in
two typical classes: mountain and river. The proposed
algorithm is applied to map each pixel in the original 3-D
image space into a feature point in the 6-D feature space.
Through the algorithm, we find that the feature subspace
consisting of “Feature 2” and “Feature 5” is clearly
illustrated by two EPFs distributions. Those candidate
vertices of the simplex indicated by black points in the
ellipse in Fig.2(d), are used to estimate the final position
of EPF-1 and EPF-2, which reflects the spectral nature of
mountain and river. The corresponding abundance maps
of the two classes can be derived by non-negative and
sum-to-one constraint, as shown in Fig.2(b) and Fig.2(c).

The hyperspectral image is coltected by the AVIRIS
sensor over Cuprite, Nevada, which has been used in the
previous N-FINDR experiments. For the original dataset,
our method maps 50 contiguous SWIR bands (1978 to
2478nm) to a 20-D feature space. Our algorithm can be
used to automatically determine the EPFs reflecting three
minerals and derive their abundance maps. Fig.4(a) shows
the spectral information of the three EPFs extracted by our
proposed method are comparable to the N-FINDR method.
where the gray dash line indicates N-FINDR’s results and
the black line indicates ours. In addition, from Fig.4(b) we
can see that, corresponding unmixing abundance maps of
three minerals derived by our approach are very
comparable to the results of [12].

Fig. 3 Observation area of AVIRIS hyperspectral image
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(a) Abundance maps of alunite,
kaolinite and calcite expressed
using the derived EPFs

(b) The realistic spectra of
the 3 minerals compared
with N-FINDR method

Fig.4 The Experimental results of AVIRIS hyperspectral image

4. Conclusion

This paper presents a new concept called “End-Pixel of
Features (EPF)” to extend the concept of end-pixels for a
variety of remote sensing data, including not only
hyper/multispectral data but also panchromatic data. The
algorithm considers the spatial spectrum information of
neighbor pixels to constitute a feature space, where we
can achieve purest end-pixels by finding a simplex with
largest volume and can reduce the effects of noise by
selecting candidate points near to vertex to estimate the
final EPFs. Some experimental results show that, the
proposed methodology can be efficiently used to realistic
hyperspectral data and other remote sensing data.
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