• Title/Summary/Keyword: multispectral data

Search Result 219, Processing Time 0.022 seconds

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

Detection of Land Subsidence and its Relationship with Land Cover Types using ESA Sentinel Satellites data: A case study of Quetta valley, Pakistan

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.148-148
    • /
    • 2018
  • Land subsidence caused by excessive groundwater pumping is a serious hydro-geological hazard. The spatial variability in land use, unbalanced groundwater extraction and aquifer characteristics are the key factors which make the problem more difficult to monitor using conventional methods. This study uses the European Space Agency (ESA) Sentinel satellites to investigate and monitor land subsidence varying with different land covers and groundwater use in the arid Quetta valley, Pakistan. The Persistent Scattering Differential Interferometry of Synthetic Aperture Radar (PS-DInSAR) method was used to develop 28 subsidence interferograms of the study area for the period between 16 Oct 2014 and 06 Oct 2016 using ESA's Sentinel-1 SAR data. The uncertainty of DInSAR result is first minimized by removing the dynamic effect caused by atmospheric factors and then filtered using the radar Amplitude Dispersion Index (ADI) to select only the stable pixels. Finally the subsidence maps were generated by spatially interpolating the land subsidence at the stable pixels, the comparison of DInSAR subsidence with GPS readings showed an R 2 of 0.94 and mean absolute error of $5.7{\pm}4.1mm$. The subsidence maps were also analysed for the effect of aquifer type and 4 land covers which were derived from Sentienl-2 multispectral images. The analysis show that during the two year period, the study area experienced highly non-linear land subsidence ranging from 10 to 280 mm. The subsidence at different land covers was significantly different from each other except between the urban and barren land. The barren land and seasonally cultivated area show minor to moderate subsidence while the orchard and urban area with high groundwater extraction rate showed excessive amount of land subsidence. Moreover, the land subsidence and groundwater drawdown was found to be linearly proportional to each other.

  • PDF

Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery (다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet)

  • Seong, Seon-kyeong;Mo, Jun-sang;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1061-1070
    • /
    • 2021
  • In this manuscript, we tried to improve the performance of the FC-DenseNet by applying an attention gate for the classification of cropping areas. The attention gate module could facilitate the learning of a deep learning model and improve the performance of the model by injecting of spatial/spectral weights to each feature map. Crop classification was performed in the onion and garlic regions using a proposed deep learning model in which an attention gate was added to the skip connection part of FC-DenseNet. Training data was produced using various PlanetScope satellite imagery, and preprocessing was applied to minimize the problem of imbalanced training dataset. As a result of the crop classification, it was verified that the proposed deep learning model can more effectively classify the onion and garlic regions than existing FC-DenseNet algorithm.

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data (RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.167-178
    • /
    • 2020
  • KOMPSAT-3A images have been used in various kinds of applications, since its launch in 2015. However, there were limits to scientific analysis and application extensions of these data, such as vegetation index estimation, because no tool was developed to obtain the surface reflectance required for analysis of the actual land environment. The surface reflectance is a product of performing an absolute atmospheric correction or calibration. The objective of this study is to quantitatively verify the accuracy of top-of-atmosphere reflectance and surface reflectance of KOMPSAT-3A images produced from the OTB open-source extension program, performing the cross-validation with those provided by a site measurement data of RadCalNet, an international Calibration/Validation (Cal/Val) portal. Besides, surface reflectance was obtained from Landsat-8 OLI images in the same site and applied together to the cross-validation process. According to the experiment, it is proven that the top-of-atmosphere reflectance of KOMPSAT-3A images differs by up to ± 0.02 in the range of 0.00 to 1.00 compared to the mean value of the RadCalNet data corresponding to the same spectral band. Surface reflectance in KOMPSAT-3A images also showed a high degree of consistency with RadCalNet data representing the difference of 0.02 to 0.04. These results are expected to be applicable to generate the value-added products of KOMPSAT-3A images as analysisready data (ARD). The tools applied in thisstudy and the research scheme can be extended as the new implementation of each sensor model to new types of multispectral images of compact advanced satellites (CAS) for land, agriculture, and forestry and the verification method, respectively.

Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters (연안해역 모니터링을 위한 초분광영상 처리기법 현황)

  • Kim, Sun-Hwa;Yang, Chan-Su
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.48-63
    • /
    • 2015
  • In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.

Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images (다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석)

  • Ahn, Ho-Yong;Ryu, Jae-Hyun;Na, Sang-il;Lee, Byung-mo;Kim, Min-ji;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1219-1230
    • /
    • 2022
  • Multi-spectral drones in agricultural observation require quantitative and reliable data based on physical quantities such as radiance or reflectance in crop yield analysis. In the case of remote sensing data for crop monitoring, images taken in the same area over time-series are required. In particular, biophysical data such as leaf area index or chlorophyll are analyzed through time-series data under the same reference, it can be directly analyzed. So, comparable reflectance data are required. Orthoimagery using drone images, the entire image pixel values are distorted or there is a difference in pixel values at the junction boundary, which limits accurate physical quantity estimation. In this study, reflectance and vegetation index based on drone images were calculated according to the correction method of drone images for time-series crop monitoring. comparing the drone reflectance and ground measured data for spectral characteristics analysis.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류)

  • Kim, Sang-Il;Kim, Hyun-Cheol;Shin, Jung-Il;Hong, Soon-Gu
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.537-544
    • /
    • 2013
  • Baton Peninsula, where Sejong station is located, mainly covered with snow and vegetation. Because this area is sensitive to climate change, monitoring of surface variation is important to understand climate change on the polar region. Due to the inaccessibility, the remote sensing is useful to continuously monitor the area. The objectives of this research are 1) map classification of land-cover types in the Barton Peninsular around King Sejong station and 2) grasp distribution of vegetation species in classified area. A KOMPSAT-2 multispectral satellite image was used to classify land-cover types and vegetation species. We performed classification with hierarchical procedure using KOMPSAT-2 satellite image and ground reference data, and the result is evaluated for accuracy as well. As the results, vegetation and non-vegetation were clearly classified although species shown lower accuracies within vegetation class.

Unsupervised Change Detection Based on Sequential Spectral Change Vector Analysis for Updating Land Cover Map (토지피복지도 갱신을 위한 S2CVA 기반 무감독 변화탐지)

  • Park, Nyunghee;Kim, Donghak;Ahn, Jaeyoon;Choi, Jaewan;Park, Wanyong;Park, Hyunchun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1075-1087
    • /
    • 2017
  • In this study, we tried to utilize results of the change detection analysis for satellite images as the basis for updating the land cover map. The Sequential Spectral Change Vector Analysis ($S^2CVA$) was applied to multi-temporal multispectral satellite imagery in order to extract changed areas, efficiently. Especially, we minimized the false alarm rate of unsupervised change detection due to the seasonal variation using the direction information in $S^2CVA$. The binary image, which is the result of unsupervised change detection, was integrated with the existing land cover map using the zonal statistics. And then, object-based analysis was performed to determine the changed area. In the experiment using PlanetScope data and the land cover map of the Ministry of Environment, the change areas within the existing land cover map could be detected efficiently.

A Study on the Rule-Based Selection of Trainging Set for the Classification of Satellite Imagery (위성 영상 분류를 위한 규칙 기반 훈련 집합 선택에 관한 연구)

  • Um, Gi-Mun;Lee, Kwae-Hi
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.7
    • /
    • pp.1763-1772
    • /
    • 1996
  • The conventional training set selection methods for the satellite image classification usually depend on the manual selection using data from the direct measurements of the ground or the ground map. However this task takes much time and cost, and some feature values vary in wide ranges even if they are in the same class. Such feature values can increase the robustness of the neural net but learning time becomes longer. In this paper,we propose anew training set selection algorithm using a rule-based method. By the technique proposed, the SPOT multispectral Imagery is classified in 3 bands, and the pixels which satisfy the rule are employed as the training sets for the neutralist classifier. The experimental results show faster initial convergence and almost the same or better classification accuracy. We also showed an improvement of the classification accuracy by using texture features and NDV1.

  • PDF