• 제목/요약/키워드: multispectral data

검색결과 219건 처리시간 0.031초

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

Detection of Land Subsidence and its Relationship with Land Cover Types using ESA Sentinel Satellites data: A case study of Quetta valley, Pakistan

  • Ahmad, Waqas;Kim, Dongkyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.148-148
    • /
    • 2018
  • Land subsidence caused by excessive groundwater pumping is a serious hydro-geological hazard. The spatial variability in land use, unbalanced groundwater extraction and aquifer characteristics are the key factors which make the problem more difficult to monitor using conventional methods. This study uses the European Space Agency (ESA) Sentinel satellites to investigate and monitor land subsidence varying with different land covers and groundwater use in the arid Quetta valley, Pakistan. The Persistent Scattering Differential Interferometry of Synthetic Aperture Radar (PS-DInSAR) method was used to develop 28 subsidence interferograms of the study area for the period between 16 Oct 2014 and 06 Oct 2016 using ESA's Sentinel-1 SAR data. The uncertainty of DInSAR result is first minimized by removing the dynamic effect caused by atmospheric factors and then filtered using the radar Amplitude Dispersion Index (ADI) to select only the stable pixels. Finally the subsidence maps were generated by spatially interpolating the land subsidence at the stable pixels, the comparison of DInSAR subsidence with GPS readings showed an R 2 of 0.94 and mean absolute error of $5.7{\pm}4.1mm$. The subsidence maps were also analysed for the effect of aquifer type and 4 land covers which were derived from Sentienl-2 multispectral images. The analysis show that during the two year period, the study area experienced highly non-linear land subsidence ranging from 10 to 280 mm. The subsidence at different land covers was significantly different from each other except between the urban and barren land. The barren land and seasonally cultivated area show minor to moderate subsidence while the orchard and urban area with high groundwater extraction rate showed excessive amount of land subsidence. Moreover, the land subsidence and groundwater drawdown was found to be linearly proportional to each other.

  • PDF

다중분광밴드 위성영상의 작물재배지역 추출을 위한 Attention Gated FC-DenseNet (Attention Gated FC-DenseNet for Extracting Crop Cultivation Area by Multispectral Satellite Imagery)

  • 성선경;모준상;나상일;최재완
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1061-1070
    • /
    • 2021
  • 본 연구에서는 국내 농업지역에 대한 작물재배지역의 분류를 위하여 FC-DenseNet 모델에 attention gate를 적용하여 딥러닝 모델의 성능을 향상시키고자 하였다. Attention gate는 특징맵의 공간/분광적 중요도에 따른 가중치를 추가적으로 학습하여 딥러닝 모델의 학습을 용이하게 하고, 모델의 성능을 향상시킬 수 있다. Attention gate를 FC-DenseNet의 스킵 연결 부분에 추가한 딥러닝 모델을 이용하여 양파 및 마늘 지역의 작물분류를 수행하였다. PlanetScope 위성영상을 이용하여 훈련자료를 제작하였으며, 훈련자료의 불균형 문제를 해결하기 위하여 전처리 과정을 적용하였다. 다양한 평가자료를 이용하여 작물재배분류 결과를 평가한 결과, 제안된 딥러닝 모델은 기존의 FC-DenseNet과 비교하여 효과적으로 양파 및 마늘 지역을 분류할 수 있는 것을 확인하였다.

RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증 (Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data)

  • 이기원;김광섭
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.167-178
    • /
    • 2020
  • 2015년 발사된 이후 KOMPSAT-3A 영상정보가 여러 분야에서 활용되고 있다. 그러나 실제 육상 환경의 분석에 필요한 지표 반사도를 얻을 수 있는 도구 개발이 이루어지지 않아서 식생 지수 산정 등과 같이 이러한 자료를 적용하는 과학적 분석과 응용 분야의 확산에는 한계가 있었다. 지표 반사도는 절대 대기 보정 처리 과정을 수행하여 얻어지는 성과물이다. 이 연구에서는 OTB 오픈 소스 확장 프로그램으로부터 KOMPSAT-3A 영상정보의 대기 반사도와 지표 반사도를 구하고, 국제 검보정 포털 RadCalNet에서 제공하는 대기 반사도와 지표 반사도 현장 측정 자료를 이용하여 정확도를 비교 검증하고자 한다. 또한 같은 지역의 Landsat-8 OLI 영상으로부터 지표 반사도를 구하고 비교 검증 실험에 같이 적용하였다. 검증 실험 결과로 KOMPSAT-3A 영상의 대기 반사도는 같은 분광대역에 해당하는 RadCalNet 자료의 평균값과 비교했을 때 0.00에서 1.00까지의 범위에서 최대 ± 0.02 차이가 보이는 것을 확인할 수 있었다. KOMPSAT-3A 영상의 지표 반사도 산출 결과는 RadCalNet 자료와 0.02에서 0.04까지의 차이 값을 갖는 높은 일치도를 보이는 것으로 나타났다. 이 결과들은 KOMPSAT-3A 영상의 분석대기자료(Analysis Ready Data)로서의 활용 가능성을 증가시키는 기본 자료로 사용할 수 있다. 또한 이 연구에서 개발된 도구와 연구 방법은 향후 국토, 농업, 산림 활용을 위한 차세대 중형 위성 영상자료의 각 센서 모델에 맞는 확장 프로그램 개발과 검증에도 적용이 가능할 것으로 생각한다.

연안해역 모니터링을 위한 초분광영상 처리기법 현황 (Current Status of Hyperspectral Data Processing Techniques for Monitoring Coastal Waters)

  • 김선화;양찬수
    • 한국지리정보학회지
    • /
    • 제18권1호
    • /
    • pp.48-63
    • /
    • 2015
  • 본 연구에서는 초분광영상의 국내 연안 활용 범위 확대 및 정확성 향상을 위해, 국외 연안지역에 대한 항공기 및 위성 탑재 초분광영상의 다양한 처리 기법을 소개한다. 육상과 달리, 가시광선 영역에서 미세한 반사율을 보이는 해양의 경우 보다 정밀한 대기보정이 요구된다. 이와 함께, 태양-해수면-센서의 기하학적 특징으로 나타나는 태양광 정반사(sun-glint)와 같은 이상 현상을 제거하기 위한 다양한 기법도 개발되어 왔다. 대기 및 정반사 보정된 초분광영상은 연안지역의 수심추정과 산호와 같은 저서 생물 및 해저면 종류 분류, 저서 생물 상태 모니터링에 활용되는데, 주로 복사전달모델과 분광라이브러리에 기반을 둔 반분석적 기법을 사용한다. 이는 초분광영상의 많은 분광 정보를 활용하는 방법으로, 실험적 모델을 적용하는 다중분광자료에 비해 상대적으로 정확도가 높다. 광학영상의 해양활용에서 있어 수심 및 수질은 매우 중요한 제약점으로, 특히 복사전달모델에 기반을 둔 분석에 따르면 초분광영상은 최대 25m까지 수심측정이나 해저면 분류가 가능하다고 하나, 실제 많은 연구에서 항공기 및 위성 탑재 초분광영상은 수심 10m 이내의 연안지역에서 활용되고 있다. 이와 같은 연구결과를 바탕으로 국내 연안지역의 초분광영상자료의 정확하고 정량적인 연안 활용을 위해서는 최대 탐지 가능한 수심 및 수질조건 등에 대한 분석이 필요하다는 것을 확인하였다. 또한 국내 연안지역에 대해 분류 가능한 저서 생물과 해저면의 분류 및 분광라이브러리 구축의 필요성을 제시하였다.

다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석 (Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images)

  • 안호용;류재현;나상일;이병모;김민지;이경도
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1219-1230
    • /
    • 2022
  • 농업관측에서의 다중분광 드론은 식생구분 및 식생활력도 분석에 있어 복사량이나 반사도와 같은 물리량을 기반으로 한 정량적이고 신뢰성 있는 데이터가 필요하다. 작황분석 모니터링을 위한 원격탐사 자료의 경우 동일지역에 대해 여러 시기에 걸쳐 촬영된 영상이 요구되며, 특히 엽면적 지수 또는 엽록소와 같은 생물리자료의 경우 동일한 기준에서의 시계열 자료를 통해 분석되므로 직접적으로 비교 가능한 반사도 자료가 필요하다. 드론영상을 기반 정사영상(정합영상)은 전체 영상 화소값이 왜곡되거나 접합 경계면 화소값의 차이가 발생하여 정확한 물리량 산출에 한계를 가진다. 본 연구는 시계열 작황 모니터링을 위한 드론영상의 보정방법에 따른 지상 반사도와 드론영상 기반 식생지수를 산정하고 그 결과를 지상관측자료와 비교하여 전처리 방법에 따른 드론영상의 분광학적 특성을 구명하고자 수행하였다.

Application of Multispectral Remotely Sensed Imagery for the Characterization of Complex Coastal Wetland Ecosystems of southern India: A Special Emphasis on Comparing Soft and Hard Classification Methods

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan;Sanjeevi , Shanmugam
    • 대한원격탐사학회지
    • /
    • 제21권3호
    • /
    • pp.189-211
    • /
    • 2005
  • This paper makes an effort to compare the recently evolved soft classification method based on Linear Spectral Mixture Modeling (LSMM) with the traditional hard classification methods based on Iterative Self-Organizing Data Analysis (ISODATA) and Maximum Likelihood Classification (MLC) algorithms in order to achieve appropriate results for mapping, monitoring and preserving valuable coastal wetland ecosystems of southern India using Indian Remote Sensing Satellite (IRS) 1C/1D LISS-III and Landsat-5 Thematic Mapper image data. ISODATA and MLC methods were attempted on these satellite image data to produce maps of 5, 10, 15 and 20 wetland classes for each of three contrast coastal wetland sites, Pitchavaram, Vedaranniyam and Rameswaram. The accuracy of the derived classes was assessed with the simplest descriptive statistic technique called overall accuracy and a discrete multivariate technique called KAPPA accuracy. ISODATA classification resulted in maps with poor accuracy compared to MLC classification that produced maps with improved accuracy. However, there was a systematic decrease in overall accuracy and KAPPA accuracy, when more number of classes was derived from IRS-1C/1D and Landsat-5 TM imagery by ISODATA and MLC. There were two principal factors for the decreased classification accuracy, namely spectral overlapping/confusion and inadequate spatial resolution of the sensors. Compared to the former, the limited instantaneous field of view (IFOV) of these sensors caused occurrence of number of mixture pixels (mixels) in the image and its effect on the classification process was a major problem to deriving accurate wetland cover types, in spite of the increasing spatial resolution of new generation Earth Observation Sensors (EOS). In order to improve the classification accuracy, a soft classification method based on Linear Spectral Mixture Modeling (LSMM) was described to calculate the spectral mixture and classify IRS-1C/1D LISS-III and Landsat-5 TM Imagery. This method considered number of reflectance end-members that form the scene spectra, followed by the determination of their nature and finally the decomposition of the spectra into their endmembers. To evaluate the LSMM areal estimates, resulted fractional end-members were compared with normalized difference vegetation index (NDVI), ground truth data, as well as those estimates derived from the traditional hard classifier (MLC). The findings revealed that NDVI values and vegetation fractions were positively correlated ($r^2$= 0.96, 0.95 and 0.92 for Rameswaram, Vedaranniyam and Pitchavaram respectively) and NDVI and soil fraction values were negatively correlated ($r^2$ =0.53, 0.39 and 0.13), indicating the reliability of the sub-pixel classification. Comparing with ground truth data, the precision of LSMM for deriving moisture fraction was 92% and 96% for soil fraction. The LSMM in general would seem well suited to locating small wetland habitats which occurred as sub-pixel inclusions, and to representing continuous gradations between different habitat types.

KOMPSAT-2 위성 영상을 이용한 남극 세종기지 주변 바톤반도의 토지피복분류 (Land-Cover Classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 Satellite Imagery)

  • 김상일;김현철;신정일;홍순규
    • 대한원격탐사학회지
    • /
    • 제29권5호
    • /
    • pp.537-544
    • /
    • 2013
  • 남극 세종 과학 기지가 위치하고 있는 바톤반도는 눈과 식생이 주를 이루고 있고, 기후변화와 같은 환경변화에 민감하게 반응한다. 극지역의 지표 모니터링은 기후변화 이해를 위해 중요하다. 그러나 극 지역은 접근성 및 공간규모로 인해 지속적으로 모니터링 하기에 어려움이 있다. 위성영상은 지속적으로 동일지역을 모니터링 할 수 있다는 장점과 함께 다중분광영역을 이용하여 지표의 상태를 파악하는데 효율적이다. 따라서 본 연구에서는 바톤반도의 지표의 상태를 지속적으로 모니터링하기 위한 기초자료로 KOMPSAT-2 다중 분광 위성영상을 이용하여 토지피복분류를 수행하였고, 나아가 분류된 토지피복 중 식생 종의 분포를 파악하였다. 다중분광영상인 KOMPSAT-2 위성영상과 현장관측자료를 이용하여 계층적 분류를 수행하였고 정확도를 평가하였다. 전반적으로 식생지역과 비식생 지역이 명확하게 분류되었으나 식생 종 분류에는 낮은 정확도를 보였다.

토지피복지도 갱신을 위한 S2CVA 기반 무감독 변화탐지 (Unsupervised Change Detection Based on Sequential Spectral Change Vector Analysis for Updating Land Cover Map)

  • 박녕희;김동학;안재윤;최재완;박완용;박현춘
    • 대한원격탐사학회지
    • /
    • 제33권6_2호
    • /
    • pp.1075-1087
    • /
    • 2017
  • 본 연구에서는 위성영상에 대한 변화탐지 기법의 결과를 토지피복지도 갱신의 기초자료로 활용하고자 하였다. $S^2CVA$(Sequential Spectral Change Vector Analysis) 기법을 다시기 다중분광 위성영상에 적용하여 해당 지역 내의 변화지역을 추출하였다. 특히, 분광변화벡터의 방향정보를 이용하여 계절적 변화에 의한 변화지역의 오탐지를 최소화하고자 하였다. 변화탐지 결과인 이진영상은 구역통계를 활용하여 토지 피복도와 함께 통합하였으며, 토지피복지도 갱신을 위하여 객체 기반의 분석을 수행하였다. PlanetScope 자료와 환경부의 토지피복지도를 이용한 실험결과, 토지피복지도 내에 변화된 지역을 효과적으로 탐지할 수 있음을 확인하였다.

위성 영상 분류를 위한 규칙 기반 훈련 집합 선택에 관한 연구 (A Study on the Rule-Based Selection of Trainging Set for the Classification of Satellite Imagery)

  • 엄기문;이쾌희
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1763-1772
    • /
    • 1996
  • 기존의 위성 영상 분류를 위한 훈련 집합의 선택은 대부분 사용자가 직접 측량하 거나 지도로부터 얻어진 데이터를 이용하여 수작업을 통하여 얻는 것이 보통이다. 그러나 이러한 작업에는 시간과 비용이 많이 소요되며, 같은 지역 내에서도 사용하는 특징값의 변화가 다양하게 나타날 수 있다. 이러한 다양성은 신경망으로 하여금 분류 데이터에 대한 강인성은 줄 수 있으나, 학습 시간이 많이 소요되는 단점을 수반하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위하여 훈련 집합의 선택시 먼저 분류 하고자 하는 지역의 대역별 밝기 분포를 조사하여 일정한 조건을 만족하는 화소들만을 훈련 집합으로 선택하는 알고리즘을 제안하였다. 이 알고리즘을 사용하여 SPOT의 위성 으로부터 얻은 다중 분광 영상에 대해 훈련 집합을 선택하고 역전과 신경망에 의해 학습한 후 분류한 결과, 기존의 사용자에 의해 선택된 훈련 집합보다 수렴속도가 빠르고, 분류 성능이 놓은 결과를 보였다. 또한 밝기 정보의에 NDVI( NormalizelD Vegetation Index)와 텍스쳐 특징을 이용 함으로써 분류 성능이 개선됨을 확인하였다.

  • PDF