Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.2.1.6

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data  

Lee, Kiwon (Department of Electronics and Information Engineering, Hansung University)
Kim, Kwangseob (Department of Electronics and Information Engineering, Hansung University)
Publication Information
Korean Journal of Remote Sensing / v.36, no.2_1, 2020 , pp. 167-178 More about this Journal
Abstract
KOMPSAT-3A images have been used in various kinds of applications, since its launch in 2015. However, there were limits to scientific analysis and application extensions of these data, such as vegetation index estimation, because no tool was developed to obtain the surface reflectance required for analysis of the actual land environment. The surface reflectance is a product of performing an absolute atmospheric correction or calibration. The objective of this study is to quantitatively verify the accuracy of top-of-atmosphere reflectance and surface reflectance of KOMPSAT-3A images produced from the OTB open-source extension program, performing the cross-validation with those provided by a site measurement data of RadCalNet, an international Calibration/Validation (Cal/Val) portal. Besides, surface reflectance was obtained from Landsat-8 OLI images in the same site and applied together to the cross-validation process. According to the experiment, it is proven that the top-of-atmosphere reflectance of KOMPSAT-3A images differs by up to ± 0.02 in the range of 0.00 to 1.00 compared to the mean value of the RadCalNet data corresponding to the same spectral band. Surface reflectance in KOMPSAT-3A images also showed a high degree of consistency with RadCalNet data representing the difference of 0.02 to 0.04. These results are expected to be applicable to generate the value-added products of KOMPSAT-3A images as analysisready data (ARD). The tools applied in thisstudy and the research scheme can be extended as the new implementation of each sensor model to new types of multispectral images of compact advanced satellites (CAS) for land, agriculture, and forestry and the verification method, respectively.
Keywords
AERONET; Atmospheric Correction; KOMPSAT-3A; RadCalNet; Surface Reflectance;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Alonso, K., M. Bachmann, K. Burch, E. Carmona, D. Cerra, R. de los Reyes, D. Dietrich, U. Heiden, A. Holderlin, J. Ickes, U. Knodt, D. Krutz, H. Lester, R. Muller, M. Pagnutti, P. Reinartz, R. Richter, R. Ryan, I. Sebastian, and M. Tegler, 2019. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS), Sensors, 19(20): 4471.   DOI
2 Badawi, M., D. Helder, L. Leigh, and X. Jing, 2019. Methods for Earth-Observing Satellite Surface Reflectance Validation, Remote Sensing, 11(13):1543.   DOI
3 Bouvet, M., K. Thome, B. Berthelot, A. Bialek, J. Czapla-Myers, N. P. Fox, P. Goryl, P. Henry, L. Ma, S. Marcq, A. Meygret, B. N. Wenny, and E. R. Woolliams, 2019. RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range, Remote Sensing, 11(20): 2401.   DOI
4 Bruegge, C. J., C. Coburn, A. Elmes, M. C. Helmlinger, F. Kataoka, M. Kuester, A. Kuze, T. Ochoa, C. Schaaf, K. Shiomi, and F. M. Schwandner, 2019. Bi-Directional Reflectance Factor Determination of the Railroad Valley Playa, Remote Sensing, 11(22): 2601.   DOI
5 CEOS, 2018. Analysis Ready Data For Land: Optical Surface Reflectance (CARD4L-OSR), https://ceos.org/ard, Accessed on May 26, 2019.
6 Maxar, 2017. DigitalGlobe Atmospheric Compensation, http://digitalglobe-marketing.s3.amazonaws.com/files/documents/DataSheet_AComp_DS.pdf, Accessed on Jan. 26, 2020.
7 Dwyer, J. L., D. P. Roy, B. Sauer, C. B. Jenkerson, H. K. Zhang, and L. Lymburner, 2018. Analysis Ready Data: Enabling Analysis of the Landsat Archive, Remote Sensing, 10(9): 1363.
8 Gorrono, J., S. Hunt, T. Scanlon, A. Banks, N. Fox, E. Woolliams, C. Underwood, F. Gascon, M. Peters, N. Fomferra, Y. Govaerts, N. Lamquin, and V. Bruniquel, 2018. Providing uncertainty estimates of the Sentinel-2 top-of-atmosphere measurements for radiometric validation activities, European Journal of Remote Sensing, 51(1): 650-666.   DOI
9 Jing, X., L. Leigh, C. T. Pinto, and D. Helder, 2019. Evaluation of RadCalNet Output Data Using Landsat 7, Landsat 8, Sentinel 2A, and Sentinel 2B Sensors, Remote Sensing, 11(5): 541.   DOI
10 Grizonnet, M., J. Michel, V. Poughon, J. Inglada, M. Savinaud, and R. Cresson, 2017. Orfeo ToolBox:open source processing of remote sensing images, Open Geospatial Data, Software and Standards, 2(1): 1-8.   DOI
11 Kim, J., C. Jin, C. Choi, and H. Ahn, 2015. Radiometric characterization and validation for the KOMPSAT-3 sensor, Remote Sensing Letters, 6(7): 529-538.   DOI
12 Lee, K.-W., K.-S. Kim, S.-G. Lee, and Y.-S. Kim, 2019. Consideration Points for application of KOMPSAT Data to Open Data Cube, Journal of the Korean Association of Geographic Information Studies, 22(1): 62-77 (in Korean with English abstract).   DOI
13 Lee, K. and K. Kim, 2019. An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation, Korean Journal of Remote Sensing, 35(6-4):1327-1339 (in Korean with English abstract).   DOI
14 Lee, K.-H. and J.-M. Yum, 2019. A Review on Atmospheric Correction Technique Using Satellite Remote Sensing, Korean Journal of Remote Sensing, 35(6-1): 1011-1030 (in Korean with English abstract).   DOI
15 Shin, D. Y., H. Y. Ahn, S. G. Lee, C. U. Choi, and J. S. Kim, 2016. Radiometric Cross-calibration of KOMPSAT-3A with Landsat-8, Proc. of The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress, Prague, Czech Republic, Jul. 12-19, vol. XLI-B1.
16 Lee, K.-S., 2019. Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing, Korean Journal of Remote Sensing, 35(6-3): 1299-1312 (in Korean with English abstract).   DOI
17 Manakos, I., K. Manevski, C. Kalaitzidis, and D. Edler, 2011. Comparison between Atmospheric Correction Modules on the Basis of Worldview-2 Imagery and In Situ Spectroradiometric Measurements, Proc. of the 7th EARSeL SIG Imaging Spectroscopy Workshop, Edinburgh, Apr. 11-13.
18 OTB, 2020. The OTB CookBook (Optical Calibration), https://www.orfeo-toolbox.org/CookBook/Applications/app_OpticalCalibration, Accessed on Mar. 10, 2020.
19 Pathak, V. N., 2019. Development of A Scheme For Atmospheric Correction of CARTOSAT-2E Data, Proc. of 4th ISSE National Conference-2019, Systems for Transforming India: Challenges and Opportunities, Space Application Center, Ahmedabad, India, Sep. 26-27.
20 RadCalNet Data Format Specification, QA4EO-WGCVRadCalNet-R2, https://www.radcalnet.org/resources/RadCalNetQuickstartGuide_20180702.pdf, Accessed on Mar.10, 2020.
21 Sterckx, S. and E. Wolters, 2019. Radiometric Top-of-Atmosphere Reflectance Consistency Assessment for Landsat 8/OLI, Sentinel-2/MSI, PROBA-V, and DEIMOS-1 over Libya-4 and RadCalNet Calibration Sites, Remote Sensing, 11(19): 2253.   DOI
22 Vanhellemont, Q. and K. Ruddick, 2018. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications, Remote Sensing of Environment, 216: 586-597.   DOI
23 SI Imaging Services, 2019. KOMPSAT-3A Image Data Manual v1.5, http://www.si-imaging.com/resources/?uid=337&mod=document, Accessed on Mar. 10, 2020.
24 U.S. Geological Survey, 2018. U.S. Landsat Analysis Ready Data: U.S. Geological Survey Fact Sheet 2018-3053, https://pubs.er.usgs.gov/publication/fs20183053, Accessed on Jun. 2, 2019.
25 U.S. Geological Survey, 2019. Landsat 8 Surface Reflectance Code (LASRC) Product Guide LSDS-1368 Version 2.0, https://www.usgs.gov/media/files/land-surface-reflectance-code-lasrcproduct-guide, Accessed on Mar. 10, 2020.
26 Yeom, J.-M., J. Ko, J. Hwang, C.-S. Lee, C.-U. Choi, and S. Jeong, 2018. Updating Absolute Radiometric Characteristics for KOMPSAT-3 and KOMPSAT-3A Multispectral Imaging Sensors Using Well-Characterized Pseudo-Invariant Tarps and Microtops II, Remote Sensing, 10(5): 697.   DOI