• Title/Summary/Keyword: multiscale simulation

Search Result 118, Processing Time 0.023 seconds

The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model

  • Chu, Xihua;Yu, Cun;Xu, Yuanjie
    • Interaction and multiscale mechanics
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2012
  • The dilatancy of granular materials has significant influence on its mechanical behaviors. The dilation angle is taken as a constant in conventional associated or non-associated flow rules based on Drucker-Prager yields theory. However, various experimental results show the dilatancy changes during progressive failure of granular materials. A non-associated flow rule with evolution of dilation angle is adopted in this study, and Cosserat continuum theory is used to describe the behaviors of granular materials for considering to some extent the its internal structure. Numerical examples focus on the bearing capacity and localization of granular materials, and results illustrate the capability and performance of the presented model in modeling the effect on failure behavior of granular materials.

A micromechanics-based time-domain viscoelastic constitutive model for particulate composites: Theory and experimental validation

  • You, Hangil;Lim, Hyoung Jun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.3
    • /
    • pp.217-242
    • /
    • 2022
  • This paper proposes a novel time-domain homogenization model combining the viscoelastic constitutive law with Eshelby's inclusion theory-based micromechanics model to predict the mechanical behavior of the particle reinforced composite material. The proposed model is intuitive and straightforward capable of predicting composites' viscoelastic behavior in the time domain. The isotropization technique for non-uniform stress-strain fields and incremental Mori-Tanaka schemes for high volume fraction are adopted in this study. Effects of the imperfectly bonded interphase layer on the viscoelastic behavior on the dynamic mechanical behavior are also investigated. The proposed model is verified by the direct numerical simulation and DMA (dynamic mechanical analysis) experimental results. The proposed model is useful for multiscale analysis of viscoelastic composite materials, and it can also be extended to predict the nonlinear viscoelastic response of composite materials.

Numerical simulation of three-dimensional crack features and chloride ion transport in unsaturated and damaged mortar

  • Zhiyong Liu;Yunsheng Zhang;Jinyang Jiang;Rusheng Qian;Tongning Cao;Yuncheng Wang;Guowen Sun
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.485-499
    • /
    • 2023
  • Both damage and unsaturated conditions accelerate the transport of erosive media inside concrete. However, their combined effects have not been fully investigated. A multiscale mortar model using representative volume elements is developed, capturing the number and distribution in each phase. Afterwards, mortar damage microstructure evolution is simulated in the tensile process. Finally, the unsaturated mortar transport is predicted and analysed. The results indicate that damage significantly affects the diffusion process in the early stage, while the transport performance is weakened due to the obstruction of the nontransport phase in the later stage. The higher the saturation and the more connected pores, the faster the diffusion rate of chloride ions. Chloride ions spread around the cracks in a tree-like manner along. The model can very well predict the chloride ion transport performance of unsaturated and damaged mortar.

Nano-continuum multi scale analysis using node deactivation techniques (절점 비활성화 기법을 적용한 나노-연속체 멀티스케일 해석 기법)

  • Rhee Seung-Yun;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.395-402
    • /
    • 2006
  • In analyzing the nano-scale phenomena or behaviors of nano devices or materials, it is often desirable to deal with more atoms than can be treated only with a full atomistic simulation. However, even now, it is advisable to apply the atomistic simulation to the narrow region where the deformation field changes rapidly but to apply the conventional continuum model to the region far from that region. This equivalent continuum model can be formulated by applying the Cauchy-Born rule to the exact atomistic potential as in the quasicontinuum method. To couple the atomistic model with the equivalent continuum model, continuum displacements are conformed to the molecular displacements at the discrete positions of the atoms within the bridging domain. To satisfy the coupling constraints, we apply the Lagrange multiplier method. The continuum model in the bridging model should be applied on the region where the deformation field changes gradually. Then we can make the nodal spacing in the continuum model be much larger than the atomic spacing. In the first step, we generate the atomic-resolution mesh with the nodal spacing equal to the atomic spacing, and then we eliminate the nodal degrees of freedom adaptively using the node deactivation techniques. We eliminate more DOFs as the regions are more far from the atomistic region. Computing time and computational resources can be greatly reduced by the present node deactivation technique in multi scale analysis.

  • PDF

Full-atomistic simulations of poly(ϵ-caprolactone) diol models with CVFF and CGenFF

  • Chang, Yin;Chang, Shu-Wei
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.4
    • /
    • pp.327-340
    • /
    • 2016
  • Poly(${\epsilon}$-caprolactone) (PCL) diol, with good biodegradation and biocompatibility, is one of the widely used soft segments (SSs) in composing bio-polyester-urethanes (Bio-PUs), which show great potential in both biomedical and tissue engineering applications. Properties of Bio-PUs are tunable by combining SS monomers with different molecular weights, structures, modifications, and ratio of components. Although numbers of research have reported many Bio-PUs properties, few studies have been done at the molecular scale. In this study, we use molecular dynamic (MD) simulation to construct atomistic models for two commonly used PCL diol SSs with different molecular weights 1247.58 Da and 1932.42 Da. We compare the simulation results by using two widely used classical force fields for organic molecules: Consistent Valence Force Field (CVFF) and CHARMM General Force Field (CGenFF), and discuss the validity and accuracy. Melt density, volume, polymer conformations, transition temperature, and mechanical properties of PCL diols are calculated and compared with experiments. Our results show that both force fields provide accurate predictions on the properties of PCL diol system at the molecular scale and could help the design of future Bio-PUs.

The Prediction of Elastic Behavior of the Nano-Sized Honeycombs Based on the Continuum Theory (연속체 이론을 기반으로 한 나노 허니콤 구조물의 탄성 거동 예측)

  • Lee, Yong-Hee;Jeong, Joon-Ho;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.413-419
    • /
    • 2011
  • The nano-size hoenycomb structures have the higher ratio of the surface to the volume than macro-size honeycomb structures, and they can maximize the functionality of the electrical and chemical catalyst. The mechanical behaviors of the nano-sized structures are different from ones of the macro-size structure, and it is caused by the surface effect. This surface effect can be investigated by the atomistic simulation; however, the prediction of mechanical behaviors of the nano-sized honeycombs are practically impossible due to excessive computational resources and computation time. In this paper, by combining the bridging method considering the surface stress elasticity model with homogenization method, the mechanical behaviors of the nano-sized honeycombs are predicted efficiently.

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong;Wu, C.T.;Park, C.K.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.137-156
    • /
    • 2013
  • In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

Nanomechanical behaviors and properties of amyloid fibrils

  • Choi, Bumjoon;Lee, Sang Woo;Eom, Kilho
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Amyloid fibrils have recently been considered as an interesting material, since they exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is larger than that of other protein materials. Despite recent findings of these excellent mechanical properties for amyloid fibrils, it has not been fully understood how these excellent mechanical properties are achieved. In this work, we have studied the nanomechanical deformation behaviors and properties of amyloid fibrils such as their elastic modulus as well as fracture strength, by using atomistic simulations, particularly steered molecular dynamics simulations. Our simulation results suggest the important role of the length of amyloid fibrils in their mechanical properties such that the fracture force of amyloid fibril is increased when the fibril length decreases. This length scale effect is attributed to the rupture mechanisms of hydrogen bonds that sustain the fibril structure. Moreover, we have investigated the effect of boundary condition on the nanomechanical deformation mechanisms of amyloid fibrils. It is found that the fracture force is critically affected by boundary condition. Our study highlights the crucial role of both fibril length and boundary condition in the nanomechanical properties of amyloid fibrils.

An Adaptive FLIP-Levelset Hybrid Method for Efficient Fluid Simulation (효율적인 유체 시뮬레이션을 위한 FLIP과 레벨셋의 적응형 혼합 기법)

  • Lim, Jae-Gwang;Kim, Bong-Jun;Hong, Jeong-Mo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • Fluid Implicit Particle (FLIP) method is used in Visual Effect(VFX) industries frequently because FLIP based simulation show high performance with good visual quality. However in large-scale fluid simulations, the efficiency of FLIP method is low because it requires many particles to represent large volume of water. In this papers, we propose a novel hybrid method of simulating fluids to supplement this drawback. To improve the performance of the FLIP method by reducing the number of particles, particles are deployed inside thin layers of the inner surface of water volume only. The coupling between less-disspative solutions of FLIP method and viscosity solution of level set method is achieved by introducing a new surface reconstruction method motivated by surface reconstruction method[1] and moving least squares(MLS) method[2]. Our hybrid method can generate high quality of water simulations efficiently with various multiscale features.

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.