DOI QR코드

DOI QR Code

Numerical simulation of three-dimensional crack features and chloride ion transport in unsaturated and damaged mortar

  • Zhiyong Liu (School of Materials Science and Engineering, Southeast University) ;
  • Yunsheng Zhang (School of Civil Engineering, Lanzhou University of Technology) ;
  • Jinyang Jiang (School of Materials Science and Engineering, Southeast University) ;
  • Rusheng Qian (College of Civil Engineering and Architecture, Zhejiang University of Technology) ;
  • Tongning Cao (School of Materials Science and Engineering, Southeast University) ;
  • Yuncheng Wang (School of Materials Science and Engineering, Southeast University) ;
  • Guowen Sun (School of Materials Science and Engineering, Shijiazhuang TieDao University)
  • Received : 2022.07.18
  • Accepted : 2022.12.16
  • Published : 2023.06.25

Abstract

Both damage and unsaturated conditions accelerate the transport of erosive media inside concrete. However, their combined effects have not been fully investigated. A multiscale mortar model using representative volume elements is developed, capturing the number and distribution in each phase. Afterwards, mortar damage microstructure evolution is simulated in the tensile process. Finally, the unsaturated mortar transport is predicted and analysed. The results indicate that damage significantly affects the diffusion process in the early stage, while the transport performance is weakened due to the obstruction of the nontransport phase in the later stage. The higher the saturation and the more connected pores, the faster the diffusion rate of chloride ions. Chloride ions spread around the cracks in a tree-like manner along. The model can very well predict the chloride ion transport performance of unsaturated and damaged mortar.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (2021YFB2601200), the National Natural Science Foundation of China (52078125, U21A20150, 52293431), the Science Foundation for Distinguished Young Scholars of Jiangsu Province (BK20220071).

References

  1. Audenaert, K., De Schutter, G. and Marsavina, L. (2009), "Influence of cracks and crack width on penetration depth of chlorides in concrete", Eur. J. Environ. Civil Eng., 13(5), 561-572. https://doi.org/10.1080/19648189.2009.9693134.
  2. Bentz, D.P., Garboczi, E.J., Lu, Y., Martys, N., Sakulich, A.R. and Weiss, W.J. (2013), "Modeling of the influence of transverse cracking on chloride penetration into concrete", Cement Concrete Compos., 38, 65-74. https://doi.org/10.1016/j.cemconcomp.2013.03.003. 
  3. Bernard, F., Kamali-Bemard, S. and Prince, W. (2008), "3D multi-scale modelling of mechanical behaviour of sound and leached mortar", Cement Concrete Res., 38(4), 449-458. https://doi.org/10.1016/j.cemconres.2007.11.015. 
  4. Fu, C.Q., Ye, H.L., Jin, X.Y., Yan, D.M., Jin, N.G. and Peng, Z.X. (2016), "Chloride penetration into concrete damaged by uniaxial tensile fatigue loading", Constr. Build. Mater., 125, 714-723. https://doi.org/10.1016/j.conbuildmat.2016.08.096. 
  5. Fu, C.Q., Li, S.Y., He, R., Zhou, K.W. and Zhang, Y. (2022), "Chloride profile characterization by electron probe microanalysis, powder extraction and AgNO3 colorimetric: A comparative study", Constr. Build. Mater., 341, 127892. https://doi.org/10.1016/j.conbuildmat. .2022.127892. 
  6. Gao, Y., Jiang, J. and Wu, K. (2016), "Numerical simulation of chloride diffusivity in non-saturated hardened cement paste", J. Build. Mater., 19(6), 1057-1061. https://doi.org/10.3969/j.issn.1007-9629.2016.06.018. 
  7. Ghanbarian, B., Hunt, A.G., Ewing, R.P. and Sahimi, M. (2013), "Tortuosity in porous media: A critical review", Soil. Sci. Soc. Am. J., 77(5), 1461-1477. https://doi.org/10.2136/sssaj2012.0435. 
  8. He, R., Ma, H.Y., Hafiz, R.B., Fu, C.Q., Jin, X.Y. and He, J.H. (2018), "Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: Experiment and theory", Mater. Des., 156, 82-92. https://doi.org/10.1016/j.matdes.2018.06.045. 
  9. He, R., Li, S.Y., Fu, C.Q., Zhou, K.W. and Dong, Z. (2022), "Influence of cyclic drying-wetting and carbonation on oxygen diffusivity of cementitious materials: Interpretation from the perspective of microstructure", J. Mater. Civil Eng., 34(10), 04022256. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004414. 
  10. He, R., Fu, C.Q., Ma, H.Y., Ye, H.L. and Jin, X.Y. (2020), "Prediction of effective chloride diffusivity of cement paste and mortar from microstructural features", J. Mater. Civil Eng., 32(8), 04020211. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003288. 
  11. He, R., Ye, H.L., Ma, H.Y., Fu, C.Q., Jin, X.Y. and Li, Z.J. (2020) "Correlating the chloride diffusion coefficient and pore structure of cement-based materials using modified noncontact electrical resistivity measurement", J. Mater. Civil Eng., 31(3), 04019006. https://doi.org/10.1061/(ASCE)MT. 1943-5533. 0002616. 
  12. Jiang, C., Gu, X.L., Huang, Q.H. and Zhang, W.P. (2017), "Deformation of concrete under high-cycle fatigue loads in uniaxial and eccentric compression", Constr. Build. Mater., 141, 379-392. https://doi.org/10.1016/j.conbuildmat.2017.03.023. 
  13. Jin, L., Zhang, R.B. and Du, X.L. (2017), "Computational homogenization for thermal conduction in heterogeneous concrete after mechanical stress", Constr. Build. Mater., 141, 222-234. https://doi.org/10.1016/j.conbuildmat.2017.03.016. 
  14. Li, Y., Chen, X.H., Jin, L. and Zhang, R.B. (2016), "Experimental and numerical study on chloride transmission in cracked concrete", Constr. Build. Mater., 127, 425-435. https://doi.org/10.1016/j.conbuildmat.2016.10.044. 
  15. Liu, L., Ye, G., Schlangen, E., Chen, H.S., Qian, Z.W., Sun, W. and van Breugel, K. (2011), "Modeling of the internal damage of saturated cement paste due to ice crystallization pressure during freezing", Cement Concrete Compos., 33(5), 562-571. https://doi.org/10.1016/j.cemconcomp.2011.03.001. 
  16. Liu, C. (2016), "Numerical simulation of microstructure development and transport properties of multiple cementitious materials", Master Thesis, Southeast University, Nanjing, China. 
  17. Liu, Q. (2016), "Research on the transport mechanism of moisture and chloride ions in cement mortar", Master Thesis, Qingdao University of Technology, Qingdao, China. 
  18. Liu, Z.Y., Gao, S., Wang, J.P., Wang, Y.C., Liu, C., Zhang, Y.S. and Jiang, J.Y. (2021), "Experimental and simulation study of water absorption in unsaturated concrete", J. Mater. Civil Eng., 33(12), 04021332. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0003959. 
  19. Liu, Z.Y., Xu, D., Gao, S., Zhang, Y.S. and Jiang, J.Y. (2020), "Assessing the adsorption and diffusion behavior of multicomponent ions in saturated calcium silicate hydrate gel pores using molecular dynamics", ACS Sustain. Chem. Eng., 8(9), 3718-3727. https://doi.org/10.1021/acssuschemeng.9b06817. 
  20. Marsavina, L., Audenaert, K., Schutter, G., Faur, N. and Marsavina, D. (2009), "Experimental and numerical determination of the chloride penetration in cracked concrete", Constr. Build. Mater., 23(1), 264-274. https://doi.org/10.1016/j.conbuildmat.2007.12.015. 
  21. Mohammadi, M., Dai, J.G., Wu, Y.F. and Bai, Y.L. (2019), "Development of extended Drucker-Prager model for non-uniform FRP-confined concrete based on triaxial tests", Constr. Build. Mater., 224, 1-18. https://doi.org/10.1016/j.conbuildmat.2019.07.061. 
  22. Monteiro, P.J.M. and Chang, C.T. (1995), "The elastic moduli of calcium hydroxide", Cement Concrete Res., 25(8), 1605-1609. https://doi.org/10.1016/0008-8846(95)00154-9. 
  23. Nakashima, Y. and Kamiya, S. (2007), "Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data", J. Nucl. Sci. Technol., 44(9), 1233-1247. https://doi.org/10.1080/18811248.2007.9711367. 
  24. Nguyen, P.T. and Amiri, O. (2016), "Study of the chloride transport in unsaturated concrete: Highlighting of electrical double layer, temperature and hysteresis effects", Constr. Build. Mater., 122, 284-293. https://doi.org/10.1016/j.conbuildmat.2016.05.154. 
  25. Nilenius, F., Larsson, F., Lundgren, K. and Runesson, K. (2015), "Mesoscale modelling of crack-induced diffusivity in concrete", Comput. Mech., 55(2), 359-370. https://doi.org/10.1007/s00466-014-1105-2. 
  26. Olsson, N., Baroghel-Bouny, V., Nilsson, L.O. and Thiery, M. (2013), "Non-saturated ion diffusion in concrete - A new approach to evaluate conductivity measurements", Cement Concrete Compos., 40, 40-47. https://doi.org/10.1016/j.cemconcomp.2013.04.001. 
  27. Sahmaran, M. (2007), "Effect of flexure induced transverse crack and self-healing on chloride diffusivity of reinforced mortar", J. Mater. Sci., 42(22), 9131-9136. https://doi.org/10.1007/s10853-007-1932-z. 
  28. Sanchez, I., Anton, C., de Vera, G., Ortega, J.M. and Climent, M.A. (2013), "Moisture distribution in partially saturated concrete studied by impedance spectroscopy", J. Nondestruct. Eval., 32(4), 362-371. https://doi.org/10.1007/s10921-013-0190-z. 
  29. Shen, B.T., Shi, J.Y. and Barton, N. (2018), "An approximate nonlinear modified Mohr-Coulomb shear strength criterion with critical state for intact rocks", J. Rock Mech. Geotech., 10(4), 645-652. https://doi.org/10.1016/j.jrmge.2018.04.002. 
  30. Sun, C.T., Yuan, L.Q., Zhai, X.F., Qu, F., Li, Y.T. and Hou, B.R. (2018), "Numerical and experimental study of moisture and chloride transport in unsaturated concrete", Constr. Build. Mater., 189, 1067-1075. https://doi.org/10.1016/j.conbuildmat.2018.08.158. 
  31. Tang, C.A. (1997), "Numerical simulation on progressive failure leading to collapse and associate seismicity", Int. J. Rock Mech. Min. Sci., 2(34), 249-261. https://doi.org/10.1016/S0148-9062(96)00039-3. 
  32. Wang, J.J., Basheer, P.A.M., Nanukuttan, S.V., Long, A.E. and Bai, Y. (2016), "Influence of service loading and the resulting micro-cracks on chloride resistance of concrete", Constr. Build. Mater., 108, 56-66. https://doi.org/10.1016/j.conbuildmat.2016.01.005. 
  33. Wang, L.C. and Wang, J.Z. (2014), "Mesoscale simulation of chloride diffusion in concrete subjected to flexural loading", Adv. Struct. Eng., 17(4), 561-571. https://doi.org/10.1260/1369-4332.17.4.561. 
  34. Wang, L.Q., Hou, D.S., Shang, H.S. and Zhao, T.J. (2018), "Molecular dynamics study on the Tri-calcium silicate hydration in sodium sulfate solution: Interface structure, dynamics and dissolution mechanism", Constr. Build. Mater., 170, 402-417. https://doi.org/10.1016/j.conbuildmat.2018.03.035. 
  35. Wei, X., Xia, Y. and Wang, Y. (2008), "Assessment for chloride permeability of concrete by electrical resistivity measurement", J. Huazhong Univ. Sci. Technol. (Urban Sci. Ed.), 25(2), 19-22. https://doi.org/10.3969/j.issn.2095-0985.2008.02.005. 
  36. Zhang, F.P., Li, D.Q., Cao, Z.J., Xiao, T. and Zhao, J. (2018), "Revisiting statistical correlation between Mohr-Coulomb shear strength parameters of Hoek-Brown rock masses", Tunn. Undergr. Sp. Tech., 77, 36-44. https://doi.org/10.1016/j.tust.2018.03.018. 
  37. Zhang, H. (2015), "Lattice modelling of chloride diffusivity of cement paste", Master Thesis, Harbin Institute of Technology, Harbin, China. 
  38. Zhang, P., Liu, Q., Geng, W., Liu, Z. and Zhao, T. (2017), "Migration of water and chloride ions into mortar", J. Chin. Ceramic Soc., 45(2), 235-241. https://doi.org/10.14062/j.issn.0454-5648.2017.02.09. 
  39. Zhao, T., Zhang, P., Wittmann, F.H. and Lehmann, E. (2008), "Observation of water penetration into uncracked and cracked steel reinforced concrete elements by means of neutron radiography", J. Qingdao Technol. Univ., 29(5), 9-16. https://doi.org/10.3969/j.issn.1673-4602.2008.05.002.