DOI QR코드

DOI QR Code

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee (Department of Atmospheric Science, Kongju National University) ;
  • Su-Bin Oh (Research and Development Department, BomIn Science Consulting) ;
  • Chun-Ji Kim (Research and Development Department, BomIn Science Consulting) ;
  • Chun-Sil Jin (Department of Nuclear Emergency Preparedness, Korea Institute of Nuclear Safety) ;
  • Hyun-Ha Lee (Department of Nuclear Emergency Preparedness, Korea Institute of Nuclear Safety)
  • Received : 2022.05.06
  • Accepted : 2022.09.06
  • Published : 2023.03.31

Abstract

Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.

Keywords

Acknowledgement

This research was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) funded by the Nuclear Safety and Security Commission (No. 1805018).

References

  1. Schneider M, Froggatt A. World nuclear industry status report 2020 [Internet]. Paris, France: A Mycle Schneider Consulting Project; 2020 [cited 2022 Dec 19] Available from: https://www. worldnuclearreport.org/-World-Nuclear-Industry-Status-Report-2020-.html.
  2. Dauer LT, Zanzonico P, Tuttle RM, Quinn DM, Strauss HW. The Japanese tsunami and resulting nuclear emergency at the Fukushima Daiichi power facility: technical, radiologic, and response perspectives. J Nucl Med. 2011;52(9):1423-1432. https://doi.org/10.2967/jnumed.111.091413
  3. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation (Scientific Annex B:). New York, NY: United Nations Scientific Committee on the Effects of Atomic Radiation; 2000 [cited 2022 Dec 19]. Available from: https://www.unscear.org/docs/publications/2020/ UNSCEAR_2020_AnnexB_AdvanceCopy.pdf.
  4. Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, et al. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys. 2012;12(5):2313-2343. https://doi.org/10.5194/acp-12-2313-2012
  5. Srinivas CV, Venkatesan R, Baskaran R, Rajagopal V, Venkatraman B. Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor. Atmos Environ. 2012;61:66-84. https://doi.org/10.1016/j.atmosenv.2012.06.082
  6. Korsakissok I, Mathieu A, Didier D. Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: a local-scale simulation and sensitivity study. Atmos Environ. 2013;70:267-279. https://doi.org/10.1016/j.atmosenv.2013.01.002
  7. Lee HJ, Jo HY, Nam KP, Lee KH, Kim CH. Measurement, simulation, and meteorological interpretation of medium-range transport of radionuclides to Korea during the Fukushima Dai-ichi nuclear accident. Ann Nucl Energy. 2017;103:412-423. https://doi.org/10.1016/j.anucene.2017.01.037
  8. Thaning L, Baklanov A. Simulation of the atmospheric transport and deposition on a local/meso-and regional scale after hypothetical accidents at the Kola nuclear power plant. Sci Total Environ. 1997;202(1-3):199-210. https://doi.org/10.1016/S0048-9697(97)00116-2
  9. Suh KS, Kim EH, Han MH. Development of long-range atmospheric dispersion model against a nuclear accident. J Radiat Prot Res. 2002;27(3):171-179.
  10. Srinivas CV, Venkatesan R. A simulation study of dispersion of air borne radionuclides from a nuclear power plant under a hypothetical accidental scenario at a tropical coastal site. Atmos Environ. 2005;39(8):1497-1511.
  11. Kim CH, Song CK, Lee SH, Song SK. Simulating mesoscale transport and diffusion of radioactive noble gases using the Lagrangian particle dispersion model. J Environ Radioact. 2008;99(10):1644-1652. https://doi.org/10.1016/j.jenvrad.2008.05.002
  12. Lee GB, Lee MC, Song YI. A study on mesoscale atmospheric dispersion of radioactive particles released from nuclear power plants. J Radiat Prot Res. 1997;22(4):273-288.
  13. Jeong H, Kim E, Park M, Jeong H, Hwang W, Han M. Numerical simulation of air pollutant dispersion using an in situ tracer experiment at a nuclear site. Ann Nucl Energy. 2014;73:1-6. https://doi.org/10.1016/j.anucene.2014.06.029
  14. Park SU, Lee IH, Joo SJ, Ju JW. Emergency preparedness for the accidental release of radionuclides from the Uljin Nuclear Power Plant in Korea. J Environ Radioact. 2017;180:90-105. https://doi.org/10.1016/j.jenvrad.2017.09.012
  15. Lim KS, Lim JM, Shin HH, Hong J, Ji YY, Lee W. Impacts of subgrid-scale orography parameterization on simulated atmospheric fields over Korea using a high-resolution atmospheric forecast model. Meteorol Atmos Phys. 2019;131(4):975-985. https://doi.org/10.1007/s00703-018-0615-4
  16. Hanna SR. The exponential probability density function and concentration fluctuations in smoke plumes. Bound Layer Meteorol. 1984;29(4):361-375. https://doi.org/10.1007/BF00120535
  17. Giorgi F, Marinucci MR, Visconti G. Use of a limited-area model nested in a general circulation model for regional climate simulation over Europe. J Geophys Res Atmos. 1990;95(D11):18413-18431. https://doi.org/10.1029/JD095iD11p18413
  18. Gibelin AL, Deque M. Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn. 2003;20(4):327-339. https://doi.org/10.1007/s00382-002-0277-1
  19. Boe J, Terray L, Habets F, Martin E. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol. 2007;27(12):1643-1655. https://doi.org/10.1002/joc.1602
  20. Lo JC, Yang ZL, Pielke Sr RA. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J Geophys Res Atmos. 2008;113(D9):D09112.
  21. Ahn JB, Lee J, Im ES. The reproducibility of surface air temperature over South Korea using dynamical downscaling and statistical correction. J Meteorol Soc Jpn. 2012;90(4):493-507. https://doi.org/10.2151/jmsj.2012-404
  22. Hwang WT, Kim EH, Jeong HS, Jeong HJ, Han MH. Influence of statistical compilation of meteorological data on short-term atmospheric dispersion factors in a hypothetical accidental release of nuclear power plants. J Radiat Prot Res. 2012;37(3):116-122. https://doi.org/10.14407/jrp.2012.37.3.116
  23. United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation (UNSCEAR 2008). New York, NY: United Nations Scientific Committee on the Effects of Atomic Radiation; 2011 [cited 2022 Dec 19]. Available from: https://www.unscear.org/docs/reports/2008/11-80076_Report_2008_Annex_D.pdf.
  24. Kim TY, Lee KH, Chae S, Ha SH, Chung SW, Lee UJ. Development of training system for radiation exposure reduction and protection of local residents against radioactivity release accidents at nuclear power plants. J Korean Soc Hazard Mitig. 2019; 19(2):79-90. https://doi.org/10.9798/KOSHAM.2019.19.2.79
  25. Civerolo K, Hogrefe C, Lynn B, Rosenthal J, Ku JY, Solecki W, et al. Estimating the effects of increased urbanization on surface meteorology and ozone concentrations in the New York City metropolitan region. Atmos Environ. 2007;41(9):1803-1818. https://doi.org/10.1016/j.atmosenv.2006.10.076
  26. Cheng FY, Byun DW. Application of high resolution land use and land cover data for atmospheric modeling in the Houston-Galveston metropolitan area, Part I: meteorological simulation results. Atmos Environ. 2008;42(33):7795-7811. https://doi.org/10.1016/j.atmosenv.2008.04.055
  27. De Meij AA, Vinuesa JF. Impact of SRTM and Corine Land Cover data on meteorological parameters using WRF. Atmos Res. 2014;143:351-370. https://doi.org/10.1016/j.atmosres.2014.03.004
  28. Santos-Alamillos FJ, Pozo-Vazquez D, Ruiz-Arias JA, Tovar-Pescador J. Influence of land-use misrepresentation on the accuracy of WRF wind estimates: evaluation of GLCC and CORINE landuse maps in southern Spain. Atmos Res. 2015;157:17-28. https://doi.org/10.1016/j.atmosres.2015.01.006
  29. Cheng FY, Hsu YC, Lin PL, Lin TH. Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J Appl Meteorol Climatol. 2013;52(3):570-587. https://doi.org/10.1175/JAMC-D-12-0109.1
  30. Cuxart J, Wrenger B, Martinez-Villagrasa D, Reuder J, Jonassen MO, Jimenez MA, et al. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos Chem Phys. 2016;16(14):9489-9504. https://doi.org/10.5194/acp-16-9489-2016
  31. Georgelin M, Bougeault P, Black T, Brzovic N, Buzzi A, Calvo J, et al. The second COMPARE exercise: a model intercomparison using a case of a typical mesoscale orographic flow, the PYREX IOP3. Q J R Meteorol Soc. 2000;126(564):991-1029. https://doi.org/10.1002/qj.49712656410
  32. Rontu L. A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus A Dyn Meteorol Oceanogr. 2006;58(1):69-81. https://doi.org/10.1111/j.1600-0870.2006.00162.x
  33. Mass C, Ovens D. WRF model physics: problems, solutions and a new paradigm for progress [Internet]. Boulder, CO: National Center for Atmospheric Research; 2010 [cited 2022 May 9]. Available from: https://www.atmos.washington.edu/~cliff/WRFworkshop2010b.ppt.
  34. Lee J, Shin HH, Hong SY, Jimenez PA, Dudhia J, Hong J. Impacts of subgrid-scale orography parameterization on simulated surface layer wind and monsoonal precipitation in the high-resolution WRF model. J Geophys Res Atmos. 2015;120(2):644-653. https://doi.org/10.1002/2014JD022747
  35. Jimenez PA, Dudhia J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteorol Climatol. 2012;51(2):300-316. https://doi.org/10.1175/JAMC-D-11-084.1
  36. Cheng WY, Steenburgh WJ. Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States. Weather Forecast. 2005;20(5):812-821. https://doi.org/10.1175/WAF885.1
  37. Bernardet L, Nance L, Demirtas M, Koch S, Szoke E, Fowler T, et al. The Developmental Testbed Center and its winter forecasting experiment. Bull Am Meteorol Soc. 2008;89(5):611-628. https://doi.org/10.1175/BAMS-89-5-611
  38. Kim JY, Kim DY, Oh JH, Kim SH, Kim HG, Kang YH, et al. Sensitivity evaluation of surface wind simulations by surface drag parameterization and spatial resolution using WRF model. J Wind Eng Inst Korea. 2015;19(3):77-83.
  39. Diro GT, Tompkins AM, Bi X. Dynamical downscaling of ECMWF ensemble seasonal forecasts over East Africa with RegCM3. J Geophys Res Atmos. 2012;117(D16):D16103.
  40. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A. Towards a climate data assimilation system: status update of ERA-Interim. ECMWF Newsl. 2008;115(7):12-18.
  41. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, et al. A description of the Advanced Research WRF version 3 [Internet]. Boulder, CO: National Center for Atmospheric Research; 2008 [cited 2022 May 9]. Available from: https://doi.org/10.5065/D68S4MVH.
  42. Draxler RR, Hess GD. Description of the HYSPLIT_4 modeling system [Internet]. Silver Spring, MD: Air Resources Laboratory; 1997 [cited 2022 Dec 19]. Available from: https://www.arl.noaa.gov/documents/reports/arl-224.pdf
  43. Draxler RR, Hess GD. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust Meteorol Mag. 1998;47(4):295-308.
  44. Brioude J, Arnold D, Stohl A, Cassiani M, Morton D, Seibert P, et al. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci Model Dev. 2013;6(6):1889-1904. https://doi.org/10.5194/gmd-6-1889-2013
  45. Sundstrom A, Elvius T. Computational problems related to limited area modelling. In: Mesinger F, Arakawa A, editors. Numerical methods used in atmospheric models. Geneva, Switzerland: World Meteorological Organization, International Council of Scientific Unions; 1976. p. 379-416.
  46. Chou MD, Suarez MJ, Ho CH, Yan MM, Lee KT. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models. J Clim. 1998;11(2):202-214. https://doi.org/10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2
  47. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos. 1997;102(D14):16663-16682. https://doi.org/10.1029/97JD00237
  48. Chen F, Dudhia J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part II: preliminary model validation. Mon Weather Rev. 2001;129(4):587-604. https://doi.org/10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2
  49. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res Atmos. 2003;108(D22):8851.
  50. Lee SH, Park SU. A vegetated urban canopy model for meteorological and environmental modelling. Bound Layer Meteorol. 2008;126(1):73-102. https://doi.org/10.1007/s10546-007-9221-6
  51. Lee SH, Lee H, Park SB, Woo JW, Lee DI, Baik JJ. Impacts of in-canyon vegetation and canyon aspect ratio on the thermal environment of street canyons: numerical investigation using a coupled WRF-VUCM model. Q J R Meteorol Soc. 2016;142(699):2562-2578. https://doi.org/10.1002/qj.2847
  52. Nakanish M. Improvement of the Mellor-Yamada turbulence closure model based on large-eddy simulation data. Bound Layer Meteorol. 2001;99(3):349-378. https://doi.org/10.1023/A:1018915827400
  53. Nakanishi M, Niino H. An improved Mellor-Yamada level-3 model with condensation physics: its design and verification. Bound Layer Meteorol. 2004;112(1):1-31. https://doi.org/10.1023/B:BOUN.0000020164.04146.98
  54. Nakanishi M, Niino H. An improved Mellor-Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog. Bound Layer Meteorol. 2006;119(2):397-407. https://doi.org/10.1007/s10546-005-9030-8
  55. Nakanishi M, Niino H. Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn. 2009;87(5):895-912. https://doi.org/10.2151/jmsj.87.895
  56. Grell GA, Devenyi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett. 2002;29(14):1693.
  57. Lin YL, Farley RD, Orville HD. Bulk parameterization of the snow field in a cloud model. J Appl Meteorol Climatol. 1983;22(6):1065-1092. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  58. Stauffer DR, Seaman NL. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: experiments with synoptic-scale data. Mon Weather Rev. 1990;118(6):1250-1277. https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2
  59. Mun J, Lee HW, Jeon W, Lee SH. Impact of meteorological initial input data on WRF simulation: comparison of ERA-interim and FNL data. J Environ Sci Int. 2017;26(12):1307-1319. https://doi.org/10.5322/JESI.2017.26.12.1307
  60. Zhu X, Iungo GV, Leonardi S, Anderson W. Parametric study of urban-like topographic statistical moments relevant to a priori modelling of bulk aerodynamic parameters. Bound Layer Meteorol. 2017;162(2):231-253. https://doi.org/10.1007/s10546-016-0198-x
  61. Allwine KJ, Whiteman CD. Single-station integral measures of atmospheric stagnation, recirculation and ventilation. Atmos Environ. 1994;28(4):713-721.
  62. Halios CH, Flocas HA, Helmis CG, Asimakopoulos DN, Mouschouras PG. Observations of local meteorological variability under large-scale circulation patterns over Athens, Greece. Atmosphere. 2018;9(1):25.
  63. Oh JS, Lee JH, Woo JW, Lee DI, Lee SH, Seo J, et al. Performance evaluation of the high-resolution WRF meteorological simulation over the Seoul metropolitan area. Atmosphere. 2020;30(3): 257-276. https://doi.org/10.14191/ATMOS.2020.30.3.257