• Title/Summary/Keyword: multirate sampling

Search Result 36, Processing Time 0.022 seconds

Intelligent Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 지능형 디지털 분산 제어 시스템 개발)

  • Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the intelligent digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for Heating, ventilating, and ai. conditioning (HVAC) system are provided.

Design of a CDBC Using Multirate Sampling (Multirate 샘플링을 이용한 CDBC의 설계)

  • 김진용;김성열;이금원;이준모
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes a design method of a CDBC(Continuous-time Deadbeat Controller)system that takes into account the response between the sampling instant and using second-order smoothing elements. The continuous deadbeat controller is composed of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. A DC servo motor is chosen for implementing CDBC algorithm. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. A Matlab Simulink is used for simulation with the Motor parameter. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

Multirate Digital Control for Fuzzy Systems: LMI-Based Design and Stability Analysis

  • Kim Do-Wan;Park Jin-Bae;Joo Young-Hoon;Kim Sung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.506-515
    • /
    • 2006
  • This paper studies an intelligent digital control for nonlinear systems with multirate sampling. It is worth noting that the multirate control design is addressed for a given nonlinear system represented by Takagi-Sugeno (T-S) fuzzy models. The main features of the proposed method are that i) it is provided that the sufficient conditions for stabilization of the discrete-time T-S fuzzy system in the sense of Lyapunov stability criterion, which is can be formulated in the linear matrix inequalities (LMIs); and ii) the stability properties of the trivial solution of the digital control system can be deduced from that of the solution of its discretized versions. An example is provided for showing the feasibility of the proposed method.

An Improved LMI-Based Intelligent Digital Redesign Using Compensated Bilinear Transform (보상된 bilinear 변환을 이용한 향상된 LMI 기반 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.91-94
    • /
    • 2005
  • This paper presents a new linear- matrix- inequality- basedintelligent digital redesign (LMI-based IDR) technique to match he states of the analog and the digital control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the multirate control is employed, and the control input is changed N times during one sampling period; 2) The proposed IDR technique is based on the compensated bilinear transformation.

  • PDF

Baseline Drift Reduction and Suppression of Power Line Noises in ECG Signal by Designing Multirate Digital Filter (다중레이트 디지털 필터 설계 및 심전도 신호의 기저선 변동 및 전원 잡음 제거)

  • Kim, Jeong-Hwan;Kim, Hyun-Tae;Park, Sang-Eun;Lee, Jeong-Whan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.551-558
    • /
    • 2014
  • Baseline drift reduction and removal of power line noises in electrocardiogram are often necessary to avoid the distortions in extracting the fiducial features. With this aim, the multirate digital filtering algorithm is suggested to design and implement Finite Impulse Response or Infinite Impulse Response Filter by changing the sampling rate with omitting or interpolating intermediate ECG data. After the experimental simulations performed, we can conclude the fact that we can suppress the baseline wander and power line disturbances in ECG signal with reducing the computational complexities in which we do not keep the original and high sampling frequency.

The Frequency Spectrum Compression Effects for Polyphase Decomposition Signal (다상분해 신호의 주파수 스펙트럼 압축 효과)

  • Park Young-Seak;Chung Won-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • In digital signal processing, the polyphase decomposition of signal has been often used in the implementation of multirate system. Especially, in the design of digital filter and so forth the method in very useful to improve the performance of various algorithms because it provides the multi-channel for paralled processing. Generally, the polyphase-decomposed signals tend to expand the frequency band by including more high frequencies than original signal from decimation for down sampling. This property brings about the significant limitation in the structure or the performance of digital polyphase signal processing system. In this paper we theoretically propose a perfect band compression and reconstruction method for polyphase component signals, then experimentally show its effectiveness through Matlab simulation.

  • PDF

Multirate Control of Sampled-Data Fuzzy System (샘플치 데이터 퍼지 시스템의 다중레이트 제어기)

  • Kim, Do-Wan;Park, Jin-Bae;Jang, Kwon-Kyu;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2543-2545
    • /
    • 2004
  • In this paper, a new multirate digital control technique for the Takagi-Sugeno (T-S) fuzzy system is suggested. The proposed method takes account of the stabilizablity of the discrete-time T-S fuzzy system at the fast-rate sampling points. Our main idea is to utilize the lifted control input. The proposed approach is to obtain the multirate discrete-time T-S fuzzy system by discretizing the overall dynamics of the T-S fuzzy system with the lifted control, and then to derive the sufficient conditions for the stabilization in the sense of the Lyapunov asymptotic stability for this system. An example is provided for showing the feasibility of the proposed discretization method.

  • PDF

Comparison of CDBC controller of DC Servo Motor (DC 서보모터의 CDBC 제어기 비교)

  • 김진용;유항열;김성열;이정국;이금원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2593-2596
    • /
    • 2003
  • The deadbeat properties have been well known in designing digital control systems. But recently several researchers proposed a CDBC(Continuout-time DeadBeat Controller) in continuous time. They used delay or smoothing elements from the finite Laplace Transform. A delay element is made by the exponential terms. A smoothing element is used to smooth the digital control input. And eventually the process is argumentd with smoothing elements and then well-known digital deadbeat controller is designed Sometimes samplings are done in continuous time systems and some hold devices are used to relate to digital systems. So multirate sampling may enhance the efficiency of the CDBC. A DC servo motor is chosen for implementing CDBC algorithm. Especially Outputs according to the variable input and disturbance are simulated. by use of Matlab Simulink.

  • PDF

Improved Digital Redesign for Fuzzy Systems: Compensated Bilinear Transform Approach

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.765-770
    • /
    • 2005
  • This paper presents a new intelligent digital redesign (IDR) method via the compensated bilinear transformation to design the digital controller such that the digital fuzzy system is equivalent to the analog fuzzy system in the sense of the state-matching. This paper especially consider a multirate control scheme with a predictive feature, where the digital control input is held constant N times between the sampling points. More precisely, the multirate control scheme is proposed that utilizes a numerical integration scheme to approximately predict the current state from the state measured at the sampling points, the delayed measurements. For this system, the IDR conditions incorporated with stabilizability in the format of the linear matrix inequalities (LMIs) are derived. The superiority of the proposed technique is convincingly visualized through a numerical example.

EEG signal display as a multirate sampling problem (멀티레이터 샘플링 문제로서의 뇌파신호 디스플레이)

  • Choi, H.G.;Oh, Y.S.;Lee, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.311-314
    • /
    • 1996
  • The display of biological signals in monitors often involves a multirate sampling operation which consists of decimation and intenolation. All electroencephalographic (EEG) samples of 10 to 30 seconds must be displayed in the computer screen to keep the aspect ratio of the paper polygraph output. Since the current affordable display technology plots at most 2,000 pixels per row, some samples need to be discarded. This paper studies methods to perform this operation characterizing them from the signal processing viewpoint and compares the display quality among several decimations. Experimental results show that a nonlinear operation such as the peak detection could be preferable than the canonical linear filtering to reduce aliasing.

  • PDF