• Title/Summary/Keyword: multiple-choice item

Search Result 80, Processing Time 0.03 seconds

Investigation of Learning Progression for Dissolution and Solution Concepts (용해와 용액 개념에 대한 학습발달과정 조사)

  • Noh, Taehee;Lee, Jaewon;Yang, Chanho;Kang, Sukjin;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.2
    • /
    • pp.295-302
    • /
    • 2016
  • In this study, we investigated a learning progression focusing on $5^{th}$ to $9^{th}$ graders' performances with dissolution and solution concepts using the construct modeling approach. We designed a construct map describing hypothetical pathways of the concept development of dissolution and solution by analyzing both National Science Curricula and related studies. A conceptions test consisting of ordered multiple-choice items was developed and administered to 826 students. A revised construct map was derived from analyses of the results based on the partial credit model, a branch of polytomous item response theory. The sequence of dissolution and solution concepts presented in the current science curriculum was found to correspond with the learning progression of the students. However, the lower anchor, the concept of the homogeneity of particles in solution, and the factors affecting solubility were not consistent with the expected levels of the construct map. After revising the construct map, we proposed a learning progression for dissolution and solution concepts with five levels: Students of level 1 (the lower anchor) recognize the particles in the solution but misunderstand various concepts; Students of level 2 understand the homogeneity of particles in solution; Students of level 3 understand solubility and the conservation of particles during dissolution; Students of level 4 partially understand the interaction between particles; and Students of level 5 (the upper anchor) understand the interaction between particles and the factors affecting solubility.

Calculation of Travel Time Values in Seoul Metropolitan Area Considering Unique Travel Patterns (수도권 통행 특성을 고려한 통행시간가치 산정 연구)

  • KIM, Kyung Hyun;LEE, Jang-Ho;YUN, Ilsoo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.481-498
    • /
    • 2017
  • Travel time reduction benefit is the most important benefit item in the feasibility study of transportation infrastructure investment projects and calculated by using the value of travel time. The current feasibility study guideline (5th edition) calculate the value of non-business ravel time in a metropolitan area, using the ratio of the value of non-business travel time to business travel time calculated based on the nationwide inter-regional traffic survey data of 1999. The characteristics of metropolitan trips are different from those of nationwide regional trips. Metropolitan trips have frequent transfers between multiple public transits and long-time commuter trips. Therefore, this research aims to calculate the value of travel time reflecting traffic characteristics in a metropolitan area by improving the limitation of current calculation methods. To reflect these characteristics, this research extracts commuter trips from non-business trips and calculates the value of travel time for commuter trips. The results of the likelihood ratio test for the commuter trip model and the non-business trip model are found to be statistically significant. An integrated public transportation model was also estimated in this study to reflect the trip conditions of the Seoul metropolitan area integrated fare system. The results of comparing coefficients between bus and subway in the integrated public transit model indicated that there were no statistically significant differences between the two modes.

The Effects of Instruction Using Mind Map in Middle School Science Class (중학교 과학수업에서 학생들의 뇌기능 분화에 따른 마인드 맵을 활용한 수업의 효과)

  • Chung, Young-Lan;Lee, Joo-Youn
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.5
    • /
    • pp.805-813
    • /
    • 2004
  • Our educational system clearly places much greater value on left hemisphere learning. Students who process information in other ways are at a serious disadvantage and may not be learning efficiently. Since mind mapping emphasizing visual and spatial language, it helps students to use the whole brain and promotes more effective comprehension. The purpose of this research was to determine the effects of the instruction using mind map on the science achievement of students. A pretest-posttest control group design was employed. Subjects were 153 male and female, first grade students in a middle school. A control group of 83 was instructed with a traditional teaching method, and an experimental group of 70 was instructed by using a mind mapping strategy. Two groups were treated for 50 hours during 17 weeks. Tolerance's 'Style Of Learning And Thinking(SOLAT)' was used to assess students' lateralization preferences. A 30-item multiple choice posttest was used to assess students' achievement. To analyze the data, we used an analysis of covariance(ANCOVA) and i-tests. It was found that 21.6% of students was left brain dominant, 31.4%, right brain dominant and 47.1 % was integrated style. There was no gender difference in hemispheric dominance. Significant differences existed between the test scores when they were taught by using a mind map. Mind mapping turned out to be a valuable learning technique for the right brain students, helping them to achieve the same level of subject mastery as left brain students. There was a significant difference between males and females in relation to mind map application. Female scored significantly higher than males.

Gender Differences in TIMSS 2003 Science Achievement (TIMSS 2003 과학 성취도에서의 성 차이)

  • Jeong, Eun-Young;Lee, Mee-Kyeong;Hong, Mi-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.4
    • /
    • pp.492-501
    • /
    • 2006
  • Gender differences in TIMSS 2003 science achievement by item type, benchmark, and content area were examined by producing a Gender Differences Index (GDI) in this study. International trends identified that male students performed better than female students in TIMSS 2003 science achievement in all types of items. The overall achievement of Korean male students was better than Korean female students, especially in multiple-choice type items. Male students outperformed females in three benchmarks, including advanced, high, and intermediate international benchmark, but they did not outperform females in the low international benchmark when gender differences of the international average as well as the Korean average were taken into account. The results of the analysis of the international average and the Korean average by content area showed that gender differences were the greatest in earth science and smallest in chemistry. In life science, female students excelled when considering the international average while male students excelled when considering the average of Korean students' performance. In addition, the number of items in which male students outperformed females was larger in both factual knowledge and the conceptual understanding domain. Implications for reducing gender differences in science achievement in Korea based on the results were provided.

An Analysis of Korean Middle School Student Achievement in Environmental Science in TIMSS 2003 (우리나라 중학생들의 환경 영역 성취도 국제 비교 분석)

  • Jeong, Eun-Young
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.2
    • /
    • pp.200-211
    • /
    • 2006
  • The purpose of this study was to analyze Korean middle school student achievement in environmental science based on the TIMSS 2003 (Trends in International Mathematics and Science Study), a student comparison of 46 participating nations. Korea ranked the fourth with a mean score of 554 in environmental science. However, all 3 environment science topics assessed in TIMSS are not included in the Korean science curriculum through 8th grade, even though they are included in most other participating nations' curricula. The average percent correct of items was analyzed according to the main topic, the item type and the cognitive domain. Items that showed differences between the average percent correct of Korea and the international average as well as differences between the average percent correct of boys and girls were further analyzed. Results revealed that Korean students performed better than the international average, especially in 'use and conservation of natural resources', multiple-choice items, and items requiring 'factual knowledge'. Also, male students demonstrated significantly higher achievement than female students. On the other hand, Korean students showed relatively lower achievement in constructed-response items, items that contained content they had not learned in science lessons and items requiring descriptions of the uses and effect of science and technology. Moreover, Korean student lacked understanding about acid rain, global warming, and ozone layer destruction. Korean female students showed relatively lower environmental conceptions and lower performance on items requiring data analysis than Korean male students. On the basis of these results, this study suggested that topics of environmental science be included in the science curriculum and taught in the science classroom to help middle school students more fully comprehend environmental issues.

The Effects of Science Question Enhancement Instruction on the Science Question Level and Achievement of Middle School Students (질문 강화 수업이 중학생들의 질문 수준과 학업 성취도에 미치는 영향)

  • Chung, Young-Lan;Bae, Jae-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.872-881
    • /
    • 2002
  • Student questioning is included in the priority of science literacy, to enable students to solve problems by exploring questions, communicating and constructing knowledge(AAAS, 1989). Also, the essence of student questioning in science lies in its function as a link between thinking and learning. But educators did not pay much attention to students' questioning in Korea. The purpose of this study was to investigate the effects of science question enhancement instruction on students' science questioning level and achievement. Also, this study showed the effects of other variables(logical thinking, science achievement, interest, and gender) on students' science questioning level. The pretest-posttest control group design group design was used. The sample was consisted of 80 second grade middle school students in experimental group(Science question enhancement instruction) and 74 students in control group(Traditional learning). Students in both groups were received identical content instruction on the unit 'Structures and functions of plant'. These groups were treated for 15 hours during 6 weeks. Students' questions were rated using the four levels described by the Middle School Students' Science Question Rating Scale(r= .96,)(Cuccio-Schirripa & Steinner, 2000). Science achievement data were collected using a 17 item multiple choice test(Cronbach ${\alpha}$= .84). To investigate students' logical thinking ability, a abridged GALT(Cronbach ${\alpha}$= .69) was used. Five-way ANOVA, ANCOVA, and multiple regression analysis were used to analyze the results. The results indicated that students who received instruction on researchable questioning outperformed those students who were not instructed on high-order questioning(p< .01). Results of correlations indicated that instruction(r= .640), science achievement(r= .311) and logical thinking ability(r= .212) was significantly and positively related with students' questioning level. But, interest and gender did not show any significant correlation with students' questioning level. Science question enhancement instruction was more effective on science achievement than the traditional instruction(p< .01).

The Compositions and the Characteristics of the Chinese National Test for University Admissions, and the Analysis on Items Concerning Chemistry (중국 대학입학시험의 구성 및 특징과 화학 문항 분석)

  • Kim, Hyun-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.8
    • /
    • pp.1158-1174
    • /
    • 2011
  • In this study, we examined the compositions, basic principles, and the area of the National Higher Education Entrance Examination (GaoKao) in 2009, we also analyzed the categories and characteristics of items. Also, the GaoKao was analyzed in terms of test specifications, the number of items, item patterns, difficulty levels, and implications of the College Scholastic Ability Test(CSAT) were explored. Results show Natural Science section of the National Test 1, 2 are 300 points per 150 min, and Natural Science, and Chemistry of Shanghai is 150 points each per 120 min. Also, the GaoKao contained multiple choice and fill in the blanks questions, and the description items are composed of experiments of various types. The GaoKao Natural Science section is composed of physics, chemistry, biology but not earth science, which is different from the CSAT. GaoKao requires basic understanding or the observation ability to reasoning, the complex thinking ability, especially emphasized on the experiment ability. The range of possible questions is in the examination outline, not the curriculum, and the ratio of questions from the University level is high. In the analysis of the behavioral domain, the ratios of the understanding and application items is higher than the CSAT, and inquiry items is lower, but the inquiry items are deeper. In case of the ratio of the expected correct answer, National Test 1 and National Test 2 is similar, but the difficult items or about 20~39% of the test is 4~5 times to that of the CSAT, making the GaoKao very difficult. The peculiar characteristics of GaoKao is the emphasis on the experiment, and even though the practical items is of lower ratio, they are very useful in life.

Narrative Inquiry : Practical experience of an Introduction to Engineering (공학입문 교과 실행경험에 관한 내러티브 탐구)

  • Park, Kyung-Moon;Kim, Taehoon
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.128-160
    • /
    • 2009
  • Narratively I have described interactions between two teachers performing an introduction to the engineering class with various situations such as place, teacher, student and subject. I have specifically illuminated a three-dimensional narrative inquiry space embracing the culture of the university, the college of engineering and the ABEEK(Accreditation Board of Engineering Education of Korea)program. The result of the study is as follows: First, in order to stimulate the students' motivation, the teachers have to make not only their class PowerPoint slides match the size of the classroom, but the content of the slides must be condensed with core concepts. They also should utilized some video clips to empower students' interest in the subject within their classrooms. Second, the teachers should do various class activities in the classroom. Instead of spending most of the class time with his/her explanation, it would be advantageous for the teachers to allow the students to perform a task in class. Third, the teachers should ask their students about assignments which are helping students' understanding of the subject and planning of their future. Lastly, the teachers need to design the mid-term and the final tests inducing the students' motivation. Those tests also must test students' creativity and insight of the subject. Thus, the test should consist of an interpretive exercise and an essay type of item thus reducing the multiple choice types of items. There are several limitations to the study. First it is difficult to generalize what we found here because it is a case study. Second, we could not study in depth the effect of the interaction between the two teachers who were performing the introduction to the engineering course during the academic semester. Third, this study just probed into the difficulties of teaching the course. Hence, we have to understand more by focusing on each issue such as adapting to a new learning environment as a student from abroad, a practical experience boosting the students' interest in the introduction to the engineering course, also a practical experience on process based learning-versus result based learning, and an effective management of the student team presentation etc.

Analysis of the Results of 2002 and 2003 Examination for Appointing Secondary School Science Teachers (2002 및 2003학년도 중등과학교사임용시험 결과 분석)

  • Lee, Yang-Rak
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.532-543
    • /
    • 2004
  • The teacher appointment examination is consisted of a written test, an interview, a demonstration of teaching practices, one's academic record etc. The primary written test(full credit of 100) consists of multiple-choice test of general pedagogy(30%) and constructed response test of science(70%). The science test consists of science education($20{\sim}30%$) and science content($70{\sim}80%$). Five science exams were implemented for appointing general science, physics, chemistry, biology and earth science teachers in 2002 and 2003. The credits alloted to science education domain decreased from $25.7{\sim}30%$ in 2002 to $24.3{\sim}25.7%$ in 2003. The percentage of correct answer was similar between science education and science content domain in 2002, but the percentage of correct answer in science education domain(70.2%) was 29.8% higher than that of science content domain in 2003. Earth science exam almost reached the target mean score of 60 but the other four exams showed the mean scores ranging from 45.0 to 52.7 in 2002 and from 40.1 to 49.6 in 2003. The percentage of high difficulty items(p<40%) was 41.2% in physics and chemistry in 2002, 50% in physics and chemistry, and 45% in biology in 2003. Seventy eight percent of the items showed fairly high discrimination index(r>.30). In addition, the reliabilities of 5 tests were from .79 to .88. In conclusion, it is recommended that the credits alloted to science education domain should be increased up to 30%, and exam difficulties should be lowered to a proper level by making science content items easier.

The Effects of Cooperative Learning to Study the Unit 'Metabolism' in High School: Application of STAD Model (고등학교 생물 '물질대사' 단원에서 협동학습의 효과: STAD 모형의 적용)

  • Chung, Young-Lan;Lee, Hye-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.1
    • /
    • pp.35-46
    • /
    • 2003
  • Problem solving ability, having been thought as one of the most important goals of science education is also a primary task for the current education. Indeed, the students' problem solving ability has shown almost no actual progress, despite our long accumulated science education. Under this circumstances, cooperative learning, a way to grow students' positive inter-dependence and problem solving ability in the basis of their active participation and discussion, was proposed as an effective teaching method. But, results have not consistently shown the advantage of cooperative learning over traditional learning for promoting academic achievement in science. Studies have consistently shown greater effectiveness on affective aspects. But, relatively few have focused on biology in Korea. The purpose of this study was to examine the effects of cooperative learning on the achievement and attitude of high school biology students. The pretest-posttest control group design was applied. The sample consisted of 50 11th-grade female students in experimental group(cooperative learning Student Team Achievement Division model) and 50 students in control group(traditional learning). Students in both groups recieved identical content instruction on the unit 'II. Methabolism'. These groups were treated for 13 hours during 5 weeks. Achievement data were collected using a 24-item multiple-choice test(content validity= .85). Science attitude was measured by an instrument which adapted by Kim In Hee(1994). The instrument(Cronbach $\alpha$=.89) included 40 items in four subscales: attitude toward science, social meaning of science, attitude toward science class, and scientific attitude. An analysis of covariance (ANCOVA) was used as the data analysis procedure. For the achievement data, no significant difference exists between the cooperative and traditional groups (p> .05). But, cooperative learning was effective in low-ability students(p < .05). For the science learning attitude data, cooperative learning was more effective than the traditional one(p< .05). Students in the cooperative group acheived better than those in traditional one especially in the subscale of attitude toward science class. There was no meaningful difference of the two methods in both high and average ability students, while cooperative learning was more effective than the traditional one in low ability students(p<.05).