• 제목/요약/키워드: multiple tuned mass damper

검색결과 41건 처리시간 0.025초

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Control strategy of the lever-type active multiple tuned mass dampers for structures

  • Li, Chunxiang;Han, Bingkang
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.301-314
    • /
    • 2007
  • The lever-type active multiple tuned mass dampers (LT-AMTMD), consisting of several lever-type active tuned mass dampers (LT-ATMD), is proposed in this paper to attenuate the vibrations of long-span bridges under the excitation directly acting on the structure, rather than through the base. With resorting to the derived analytical-expressions for the dynamic magnification factors of the LT-AMTMD structure system, the performance assessment then is conducted on the LT-AMTMD with the identical stiffness and damping coefficient but unequal mass. Numerical results indicate that the LT-AMTMD with the actuator set at the mass block can provide better effectiveness in reducing the vibrations of long-span bridges compared to the LT-AMTMD with the actuator set at other locations. An appealing feature of the LT-AMTMD with the actuator set at the mass block is that the static stretching of the spring may be freely adjusted in accordance with the practical requirements through changing the location of the support within the viable range while maintaining the same performance (including the same stroke displacement). Likewise, it is shown that the LT-AMTMD with the actuator set at the mass block can further ameliorate the performance of the lever-type multiple tuned mass dampers (LT-MTMD) and has higher effectiveness than a single lever-type active tuned mass damper (LT-ATMD). Therefore, the LT-AMTMD with the actuator set at the mass block may be a better means of suppressing the vibrations of long-span bridges with the consequence of not requiring the large static stretching of the spring and possessing a desirable robustness.

Optimum tuned mass damper approaches for adjacent structures

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1071-1091
    • /
    • 2014
  • Pounding of adjacent structures are always a notable reason for damages after strong ground motions, but it is already unforeseen detail in newly constructed structures. Thus, several approaches have been proposed in order to prevent the pounding of structures. By using optimally tuned mass dampers, it is possible to decrease the displacement vibrations of structures. But in adjacent structures, the response of both structures must be considered in the objective function of optimization process. In this paper, two different designs of Tuned Mass Dampers (TMD) are investigated. The first design covers independent TMDs on both structures. In the second design, adjacent structures are coupled by a TMD on the top of the structures. Optimum TMD parameters are found by using the developed optimization methodology employing harmony search algorithm. The proposed method is presented with single degree of freedom and multiple degree of freedom structures. Results show that the coupled design is not effective on multiple degree of freedom adjacent structures. The coupled design is only effective for rigid structures with a single degree of freedom while the use of independent TMDs are effective on both rigid and flexural structures.

Multiple Pounding Tuned Mass Damper (MPTMD) control on benchmark tower subjected to earthquake excitations

  • Lin, Wei;Lin, Yinglu;Song, Gangbing;Li, Jun
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.1123-1141
    • /
    • 2016
  • To explore the application of traditional tuned mass dampers (TMDs) to the earthquake induced vibration control problem, a pounding tuned mass damper (PTMD) is proposed by adding a viscoelastic limitation to the traditional TMD. In the proposed PTMD, the vibration energy can be further dissipated through the impact between the attached mass and the viscoelastic layer. More energy dissipation modes can guarantee better control effectiveness under a suite of excitations. To further reduce mass ratio and enhance the implementation of the PTMD control, multiple PTMDs (MPTMD) control is then presented. After the experimental validation of the proposed improved Hertz based pounding model, the basic equations of the MPTMD controlled system are obtained. Numerical simulation is conducted on the benchmark model of the Canton Tower. The control effectiveness of the PTMD and the MPTMD is analyzed and compared under different earthquake inputs. The sensitivity and the optimization of the design parameters are also investigated. It is demonstrated that PTMDs have better control efficiency over the traditional TMDs, especially under more severe excitation. The control performance can be further improved with MPTMD control. The robustness can be enhanced while the attached mass for each PTMD can be greatly reduced. It is also demonstrated through the simulation that a non-uniformly distributed MPTMD has better control performance than the uniformly distributed one. Parameter study is carried out for both the PTMD and the MPTMD systems. Finally, the optimization of the design parameters, including mass ratio, initial gap value, and number of PTMD in the MPTMD system, is performed for control improvement.

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F.;Dong, S.H.;Xu, S.L.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • 제30권1호
    • /
    • pp.89-106
    • /
    • 2022
  • The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

다중 능동형 동조질량감쇠기가 설치된 고층빌딩의 내진성능 평가 (Seismic Performance Assessment of High-Rise Building installed with Multiple Active Tuned Mass Dampers)

  • 박관순;옥승용
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.89-97
    • /
    • 2017
  • The tuned mass damper (TMD) system was first proposed as an efficient vibration control method for high-rise buildings, and multiple TMD (MTMD) system was then proposed for the purpose of improving the robust performance. Thereafter, the active TMD (ATMD) is proposed to improve the vibration control performance over the TMD and MTMD systems. However, this system may experience an system-instability problem in case of the actuator malfunction. In order to overcome such limitations of actuator malfunction causing the instability of the structural system, in this study, we investigate the feasibility of the multiple ATMD (MATMD) system that facilitates both advantages of the MTMD and ATMD. Numerical example demonstrates that, when the proposed system is designed to have the same capacity as the ATMD, it shows a similar control performance to the ATMD, but also has very good adaptive control performance against the emergency situations such as actuator failures.

Series tuned mass dampers in vibration control of continuous railway bridges

  • Araz, Onur;Kahya, Volkan
    • Structural Engineering and Mechanics
    • /
    • 제73권2호
    • /
    • pp.133-141
    • /
    • 2020
  • This paper presents the applicability of series tuned mass dampers (STMDs) to reduce the multiple resonant responses of continuous railway bridges under high-speed train. The bridge is modeled by two-span Bernoulli-Euler beam with uniform cross-section, and a STMD device consisting of two TMD units installed on the bridge to reduce its multiple resonant vibrations. The system is assumed to be under the action of a high-speed train passage which is modeled as a series of moving forces. Sequential Programming Technique (SQP) is carried out to find the optimal parameters of the STMD that minimizes the maximum peak responses of the bridge. Comparisons with the results available in the literature are presented to demonstrate the effectiveness and robustness of STMD system in reducing the multiple resonant responses of the continuous railway bridges under high-speed trains.

Probabilistic study on buildings with MTMD system in different seismic performance levels

  • Etedali, Sadegh
    • Structural Engineering and Mechanics
    • /
    • 제81권4호
    • /
    • pp.429-441
    • /
    • 2022
  • A probabilistic assessment of the seismic-excited buildings with a multiple-tuned-mass-damper (MTMD) system is carried out in the presence of uncertainties of the structural model, MTMD system, and the stochastic model of the seismic excitations. A free search optimization procedure of the individual mass, stiffness and, damping parameters of the MTMD system based on the snap-drift cuckoo search (SDCS) optimization algorithm is proposed for the optimal design of the MTMD system. Considering a 10-story structure in three cases equipped with single tuned mass damper (STMS), 5-TMD and 10-TMD, sensitivity analyses are carried out using Sobol' indices based on the Monte Carlo simulation (MCS) method. Considering different seismic performance levels, the reliability analyses are done using MCS and kriging-based MCS methods. The results show the maximum structural responses are more affected by changes in the PGA and the stiffness coefficients of the structural floors and TMDs. The results indicate the kriging-based MCS method can estimate the accurate amount of failure probability by spending less time than the MCS. The results also show the MTMD gives a significant reduction in the structural failure probability. The effect of the MTMD on the reduction of the failure probability is remarkable in the performance levels of life safety and collapse prevention. The maximum drift of floors may be reduced for the nominal structural system by increasing the TMDs, however, the complexity of the MTMD model and increasing its corresponding uncertainty sources can be caused a slight increase in the failure probability of the structure.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

Series tuned mass dampers in train-induced vibration control of railway bridges

  • Kahya, Volkan;Araz, Onur
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.453-461
    • /
    • 2017
  • This paper presents the series multiple tuned mass dampers (STMDs) to suppress the resonant vibrations of railway bridges under the passage of high-speed trains (HSTs). A STMD device consisting of two spring-mass-damper units connected each other in series is installed on the bridge. In solution, bridge is modeled as a simply-supported Euler-Bernoulli beam with constant cross-section, and vehicle is simulated as a series of moving forces with constant speed. By the assumed mode method, the governing equations of motion of the beam-TMD device coupled system traversed by a moving train are obtained. The optimum values for the parameters of the STMD device are obtained for the criterion based on the minimization of the maximum dynamic displacement of the beam at its midspan. Single TMD and multiple TMDs in parallel are also considered for demonstration of the STMD device's performance. The results show that STMDs are effective in bridge vibration suppression and robust to parameters' change in the main system and the absorber itself.