• Title/Summary/Keyword: multiple transform

Search Result 473, Processing Time 0.023 seconds

Dual-tree Wavelet Discrete Transformation Using Quincunx Sampling For Image Processing (디지털 영상 처리를 위한 Quincunx 표본화가 사용된 이중 트리 이산 웨이브렛 변환)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.119-131
    • /
    • 2011
  • In this paper, we explore the application of 2-D dual-tree discrete wavelet transform (DDWT), which is a directional and redundant transform, for image coding. DDWT main property is a more computationally efficient approach to shift invariance. Also, the DDWT gives much better directional selectivity when filtering multidimensional signals. The dual-tree DWT of a signal is implemented using two critically-sampled DWTs in parallel on the same data. The transform is 2-times expansive because for an N-point signal it gives 2N DWT coefficients. If the filters are designed is a specific way, then the sub-band signals of the upper DWT can be interpreted as the real part of a complex wavelet transform, and sub-band signals of the lower DWT can be interpreted as the imaginary part. The quincunx lattice is a sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Quincunx lattice yields a non separable 2D-wavelet transform, which is also symmetric in both horizontal and vertical direction. And non-separable wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, non-separable image processing using DDWT services good performance.

Angle Invariant and Noise Robust Barcode Detection System (기울기와 노이즈에 강인한 바코드 검출 시스템)

  • Park, Dongjin;Jun, Kyungkoo
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.868-877
    • /
    • 2015
  • The barcode area extraction from images has been extensively studied, and existing methods exploit frequency characteristics or depend on the Hough transform (HT). However, the slantedness of the images and noise affects the performance of these approaches. Moreover, it is difficult to deal with the case where an image contains multiple barcodes. We therefore propose a barcode detection algorithm that is robust under such unfavorable conditions. The pre-processing step implements a probabilistic Hough transform to determine the areas that contain barcodes with a high probability, regardless of the slantedness, noise, and the number of instances. Then, a frequency component analysis extracts the barcodes. We successfully implemented the proposed system and performed a series of barcode extraction tests.

Multiuser chirp modulation for underwater acoustic channel based on VTRM

  • Yuan, Fei;Wei, Qian;Cheng, En
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.256-265
    • /
    • 2017
  • In this paper, an ascheme is proposed for multiuser underwater acoustic communication by using the multi-chirp rate signals. It differs from the well known TDMA (Time Division Multiple Access), FDMA (Frequency Division Multiple Access) or CDMA (Code Division Multiple Access), by assigning each users with different chirp-rate carriers instead of the time, frequency or PN code. Multi-chirp rate signals can be separated from each other by FrFT (Fractional Fourier Transform), which can be regarded as the chirp-based decomposing, and superior to the match filter in the underwater acoustic channel. VTRM (Virtual Time Reverse Mirror) is applied into the system to alleviate the ISI caused by the multipatch and make the equalization more simple. Results of computer simulations and pool experiments prove that the proposed multiuser underwater acoustic communication based on the multi-chirp rate exhibit well performance. Outfield experments carrie out in Xiamen Port show that using about 10 kHz bandwidth, four users could communicate at the same time with 425 bps with low BER and can match the UAC application.

ECG Compression Structure Design Using of Multiple Wavelet Basis Functions (다중웨이브렛 기저함수를 이용한 심전도 압축구조설계)

  • Kim Tae-hyung;Kwon Chang-Young;Yoon Dong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.467-472
    • /
    • 2005
  • ECG signals are recorded for diagnostic purposes in many clinical situations. Also, In order to permit good clinical interpretation, data is needed at high resolutions and sampling rates. Therefore In this paper, we designed to compression structure using multiple wavelet basis function(SWBF) and compared to single wavelet basis function(SWBF) and discrete cosine transform(DCT). For experience objectivity, Simulation was performed using the arrhythmia data with sampling frequency 360Hz, resolution lIbit at MIT-BIH database. An estimate of performance estimate evaluate the reconstruction error. Consequently compression structure using MWBF has high performance result.

Multiple-valued FFT processor design using current mode CMOS (전류 모드 CMOS를 이용한 다치 FFT 연산기 설계)

  • Song, Hong-Bok;Seo, Myung-Woong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.135-143
    • /
    • 2002
  • In this study, Multi-Values Logic processor was designed using the basic circuit of the electric current mode CMOS. First of all, binary FFT(Fast courier Transform) was extended and high-speed Multi-Valued Logic processor was constructed using a multi valued logic circuit. Compared with the existing two-valued FFT, the FFT operation can reduce the number of transistors significantly and show the simplicity of the circuit. Moreover, for the construction of amount was used inside the FFT circuit with the set of redundant numbers like {0, 1, 2, 3}. As a result, the defects in lines were reduced and it turned out to be effective in the aspect of normality an regularity when it was used designing VLSI(Very Large Scale Integration). To multiply FFT, the time and size of the operation was used toed as LUT(Lood Up Table).

Design and Implementation of Multi-channel FFT Processor for MIMO Systems (MIMO 시스템을 위한 다채널 FFT 프로세서의 설계 및 구현)

  • Jung, Yongchul;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.659-665
    • /
    • 2017
  • In this paper, a low complexity fast Fourier transform(FFT) processor is proposed for multiple input multiple output(MIMO) systems. The IEEE 802.11ac standard has been adopted along with the demand for a system capable of high channel capacity and Gbps transmission in order to utilize various multimedia services using a wireless LAN. The proposed scalable FFT processor can support the variable length of 64, 128, 256, and 512 for 8x8 antenna configuration as specified in IEEE 802.11ac standard with MIMO-OFDM scheme. By reducing the required number of non-trivial multipliers with mixed-radix(MR) and multipath delay commutator(MDC) architecture, the complexity of the proposed FFT processor was dramatically decreased. Implementation results show that the proposed FFT processor can reduced the logic gate count by 50%, compared with the radix-2 SDF FFT processor. Also, compared with the 8-channel MR-2/2/2/4/2/4/2 MDC processor and 8-channel MR-2/2/2/8/8 MDC processor, it is shown that the gate count is reduced by 18% and 17% respectively.

Automatic Coin Calculation System using Circular Hough Transform and Post-processing Techniques (원형 Hough 변환 및 후처리기법을 이용한 동전 자동 계산 시스템)

  • Chae, S.;Jun, Kyungkoo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.413-419
    • /
    • 2014
  • In this paper, we develop an automatic coin calculation system by using digital image processing. Existing schemes have the problem that is not able to exclude non-circular shape from the calculation. We propose a method to detect only coins which have circular form by applying the circular Hough transform(CHT). However, the CHT has the drawback that detects multiple circles even for just one coin because of shadow noise, the patterns on coins, and non-circular edge detection. We propose a post processing algorithm to overcome these limitations. The proposed system was implemented and successfully calculated the coin amount in the case that non-circular objects are mixed with coins.

Prediction technique for system marginal price using wavelet transform (웨이브릿 변환을 이용한 발전시스템 한계원가 예측기법)

  • Kim, Chang-Il;Kim, Bong-Tae;Kim, Woo-Hyun;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.210-212
    • /
    • 1999
  • This paper proposes a novel wavelet transform based technique for prediction of System Marginal Price(SMP). In this paper, Daubechies D1(haar), D2, D4 wavelet transforms are adopted to predict SMP and the numerical results reveal that certain wavelet components can effectively be used to identify the SMP characteristics with relation to the system demand in electric power systems. The wavelet coefficients associated with certain frequency and time localisation are adjusted using the conventional multiple regression method and then reconstructed in order to predict the SMP on the next scheduling day through a five-scale synthesis technique. The outcome of the study clearly indicates that the proposed wavelet transform approach can be used as an attractive and effective means for the SMP forecasting.

  • PDF

Short-term load forecasting using Kohonen neural network and wavelet transform (코호넨 신경회로망과 웨이브릿 변환을 이용한 단기부하예측)

  • Kim, Chang-Il;Kim, Bong-Tae;Kim, Woo-Hyun;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.239-241
    • /
    • 1999
  • This paper proposes a novel wavelet transform and Kohonen neural network based technique for short-time load forecasting of power systems. Firstly. Kohonen Self-organizing map(KSOM) is applied to classify the loads and then the Daubechies D2, D4 and D10 wavelet transforms are adopted in order to forecast the short-term loads. The wavelet coefficients associated with certain frequency and time localisation are adjusted using the conventional multiple regression method and then reconstructed in order to forecast the final loads through a four-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of Kohonen neural network and wavelet transform approach can be used as an attractive and effective means for short-term load forecasting.

  • PDF