S2-01

Multiple Internal Reflection Fourier-Transform Infrared Spectroscopy and Its Application to ALD Mechanism Studies

박선경¹, 이남수², <u>김윤수</u>³

¹Department of Physics, Rutgers University, ²충북대학교 화학과, ³고려대학교 신소재화학과

Multiple internal reflection (MIR) Fourier-transform infrared (FTIR) spectroscopy has been fitted with an ultrahigh vacuum (UHV) system to study adsorption and/or surface reactions that occur in atomic layer deposition (ALD) processes. In this presentation, the building up of a UHV system that is compatible with a commercial FTIR spectrometer will be shown. Also, a preliminary result of its application to the study of the initial mechanism for the ALD of aluminum oxide (Al₂O₃) will be explained where dimethylaluminum isoproxide, (CH₃)₂AlOCH(CH₃)₂, and water were used as sources for aluminum and oxygen, respectively. The technique will be useful for analyzing surface reactions between different organic molecules.