• Title/Summary/Keyword: multiple solutions

Search Result 794, Processing Time 0.024 seconds

An Integer Programming-based Local Search for the Multiple-choice Multidimensional Knapsack Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.1-9
    • /
    • 2018
  • The multiple-choice multidimensional knapsack problem (MMKP) is a variant of the well known 0-1 knapsack problem, which is known as an NP-hard problem. This paper proposes a method for solving the MMKP using the integer programming-based local search (IPbLS). IPbLS is a kind of a local search and uses integer programming to generate a neighbor solution. The most important thing in IPbLS is the way to select items participating in the next integer programming step. In this paper, three ways to select items are introduced and compared on 37 well-known benchmark data instances. Experimental results shows that the method using linear programming is the best for the MMKP. It also shows that the proposed method can find the equal or better solutions than the best known solutions in 23 data instances, and the new better solutions in 13 instances.

Investigation of Single-Input Multiple-Output Wireless Power Transfer Systems Based on Optimization of Receiver Loads for Maximum Efficiencies

  • Kim, Sejin;Hwang, Sungyoun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.145-153
    • /
    • 2018
  • In this paper, the efficiency of single-input multiple-output (SIMO) wireless power transfer systems is examined. Closed-form solutions for the receiver loads that maximize either the total efficiency or the efficiency for a specific receiver are derived. They are validated with the solutions obtained using genetic algorithm (GA) optimization. The optimum load values required to maximize the total efficiency are found to be identical for all the receivers. Alternatively, the loads of receivers can be adjusted to deliver power selectively to a receiver of interest. The total efficiency is not significantly affected by this selective power distribution. A SIMO system is fabricated and tested; the measured efficiency matches closely with the efficiency obtained from the theory.

Dual Response Surface Optimization using Multiple Objective Genetic Algorithms (다목적 유전 알고리즘을 이용한 쌍대반응표면최적화)

  • Lee, Dong-Hee;Kim, Bo-Ra;Yang, Jin-Kyung;Oh, Seon-Hye
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.3
    • /
    • pp.164-175
    • /
    • 2017
  • Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.

A Necessary and Sufficient Condition for Multiplicity of Steady-State Solutions of Point-Kinetics Reactor Feedback Svstems (점동특성시스템이 다중의 정상상태해를 갖기 위한 필요충분조건)

  • Yang, Chae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.463-469
    • /
    • 1995
  • The point-kinetics reactor system which is subject to feedback effects may have multiple steady-state solutions for some operating conditions. A necessary and sufficient condition for multiple steady-state solutions of the point-kinetics reactor feedback system for an external input reactivity is obtained through their theoretical approach. If and only if the steady-state feedback reactivity of the reactor system is not strictly monotonic on some values of the feedback variables, then the reactor system has multiple steady-state solutions for the equilibrium operating conditions corresponding to the values of the feedback variables. Also, if and only if the steady--state feedback reactivity is strictly monotonic on all the feedback variables, then the reactor system has only one steady-state solution for all the operating conditions.

  • PDF

MULTIPLE EXISTENCE OF SOLUTIONS FOR A NONHOMOGENEOUS ELLPITIC PROBLEMS ON RN

  • Hirano, Norimichi;Kim, Wan Se
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.703-713
    • /
    • 2018
  • Let $N{\geq}3$, $2^*=2N/(N-2)$ and $p{\in}(2,2^*)$. Our purpose in this paper is to consider multiple existence of solutions of problem $$-{\Delta}u-{\frac{\mu}{{\mid}x{\mid}^2}}+{\alpha}u={\mid}u{\mid}^{p-2}u+{\lambda}f\;u{\in}H^1({\mathbb{R}}^n)$$, where a, ${\lambda}$ > 0, ${\mu}{\in}(0,(N-2)^2/4)f{\in}H^{-1}({\mathbb{R}}^N)$, $f{\geq}0$ and $f{\neq}0$.

PERIODIC SOLUTIONS FOR DUFFING TYPE p-LAPLACIAN EQUATION WITH MULTIPLE DEVIATING ARGUMENTS

  • Jiang, Ani
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.27-34
    • /
    • 2013
  • In this paper, we consider the Duffing type p-Laplacian equation with multiple deviating arguments of the form $$({\varphi}_p(x^{\prime}(t)))^{\prime}+Cx^{\prime}(t)+go(t,x(t))+\sum_{k=1}^ngk(t,x(t-{\tau}_k(t)))=e(t)$$. By using the coincidence degree theory, we establish new results on the existence and uniqueness of periodic solutions for the above equation. Moreover, an example is given to illustrate the effectiveness of our results.

INSTABILITY OF SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF EIGHTH ORDER WITH MULTIPLE DEVIATING ARGUMENTS

  • Tunc, Cemil
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.741-748
    • /
    • 2012
  • In this work, we prove the instability of solutions for a class of nonlinear functional differential equations of the eighth order with n-deviating arguments. We employ the functional Lyapunov approach and the Krasovskii criteria to prove the main results. The obtained results extend some existing results in the literature.

Diffraction and Radiation of Waves by Array of Multiple Buoys (다수 부체 배열에 의한 파의 회절과 방사)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.151-160
    • /
    • 2016
  • The diffraction and radiation of linear waves by an array of truncated floating multiple buoys are solved using the interaction theory based on a matched eigenfunction expansion method (MEEM). The interaction processes between multiple buoys are very complex and numerous, because the scattered and radiated waves from each buoy affect the others in the array. Our primary aim is therefore to construct the rigorous wave exciting forces and hydrodynamic forces to deal with the problem of multiple interactions. This present method is applied to a square array of four buoys with two incidence angles, and the results are given for the wave excitation forces on each buoy, heave RAO for each buoy heaving independently, and wave elevations around the buoys and wave run-up. The analytical solutions are in good agreement with the numerical solutions obtained from commercial code (WAMIT).

Trust-Tech based Parameter Estimation and its Application to Power System Load Modeling

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong;Yu, David C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.451-459
    • /
    • 2008
  • Accurate load modeling is essential for power system static and dynamic analysis. By the nature of the problem of parameter estimation for power system load modeling using actual measurements, multiple local optimal solutions may exist and local methods can be trapped in a local optimal solution giving possibly poor performance. In this paper, Trust-Tech, a novel methodology for global optimization, is applied to tackle the multiple local optimal solutions issue in measurement-based power system load modeling. Multiple sets of parameter values of a composite load model are obtained using Trust-Tech in a deterministic manner. Numerical studies indicate that Trust-Tech along with conventional local methods can be successfully applied to power system load model parameter estimation in measurement-based approaches.

INFINITELY MANY SOLUTIONS OF A WAVE EQUATION WITH JUMPING NONLINEARITY

  • Park, Q-Heung;Jung, Tack-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.943-956
    • /
    • 2000
  • We investigate a relation between multiplicity of solutions and source terms of jumping problem in wave equation when the nonlinearity crosses an eigenvalue and the source term is generated by finite eigenfunctions. We also show that the jumping problem has infinitely many solutions when the source term is positive multiple of the positve eigenfunction.

  • PDF