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MULTIPLE EXISTENCE OF SOLUTIONS FOR A

NONHOMOGENEOUS ELLPITIC PROBLEMS ON RN

Norimichi Hirano and Wan Se Kim

Abstract. Let N ≥ 3, 2∗ = 2N/(N − 2) and p ∈ (2, 2∗). Our purpose in

this paper is to consider multiple existence of solutions of problem

−∆u− µ
|x|2 + αu = |u|p−2 u+ λf u ∈ H1

(
RN

)
,

where a, λ > 0, µ ∈
(
0, (N − 2)2/4

)
f ∈ H−1

(
RN

)
, f ≥ 0 and f 6≡ 0.

1. Introduction

Let N ≥ 3, f ∈ L2(RN ) with f ≥ 0 and f 6≡ 0, and p ∈ (2, 2∗), where
2∗ = 2N/(N − 2). Nonhomogeneous problem −∆u+ au = up−1 + λf in RN

u > 0 in RN
u ∈ H1(RN )

(P0)

has been investigated by many authors. Here a ≥ 0 and λ > 0. On the multiple
existence of solutions, Zhu[7] proved the existence of two positive solutions u1, u2

∈ H1(RN ) of problem (P) for f sufficiently small and having an exponental
decay. The first solution u1 is close to 0 and the second solution u2 is obtained
by mountain path argument. This result was improved in [4] and [5]. In [2] and
[6], it was shown that there exists M > 0 sych that for each f ∈ H−1

(
RN
)

satisfying ‖f‖H−1 < M, f ≥ 0, f 6≡ 0, problem (P) possesses at least two
positive solutions. That is norm ‖f‖H−1 determines the mountain pass structure
and causes multiple existence of the solutions. It is interesting what the nature
of function f affects the multiplicity of the solutions. In [2,4,5,6,8], the authors
investigated that some profiles of function f cause multiplicity of the solutions.
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Our purpose in the present paper is to consider the multiplicity of solutions
of problem

−∆u− µ u
|x|2 + au = |u|p−2

u+ λf (· − ηe) in RN

u > 0 in RN
u ∈ H1(RN )

(P)

where 0 < µ < µ = (N − 2)
2
/4, e ∈ RN with |e| = 1 and η ∈ R. For problem

(P0) , transition of f does not give any effect to the number of solutions, i.e.
problem (P0) is equivarent to problem (P0) with f replaced f (· − ηe) for any
e ∈ RN with |e| = 1 and η ∈ R. We will show, under the presence of Hardy
term, the effect of the translation of f and ‖f‖H−1(RN ) on the multiplicity of

solutions of (P ) .
Our main result is as follows:

Theorem 1.1. There exist λ0 > 0 and η0 > 0 such that for each µ ∈ (0, µ) ,
the followings hold;

(1) for each λ ∈ (0, λ0) and η ∈ R, problem (P ) has at least two solutions;
(2) for each λ ∈ (0, λ0) and η ∈ R\ (−η0, η0) , problem (P ) has at least four

solutions.

2. Preliminaries

We denote by Br(x) the open ball in RN centered at x and radius r. For
each q ∈ [1,∞], we denote by |·|q the norm of Lq(RN ). For simplicity we put

H = H1(RN ). For u, v ∈ H, we put 〈u, v〉 =
∫
RN uv dx. We denote by ‖·‖0 the

norm of H defined by ‖v‖20 = |∇v|22 + a |v|2 for v ∈ H. Put u+ = max {0, u}
and u− = min {0, u} for u ∈ H. We denote by H+ a subset defined by

H+ =
{
v ∈ H : v+ 6≡ 0

}
.

We denote by ∇F : H → H the gradient of the functional F. First, we retrieve
some known results for the homogeneous problem

−∆v + av = |v |p−1
v v ∈ H.

v > 0 on RN . (1)

We denote by I0 : H → R the functional associated with the problem (1), i.e.,

I0(v) =
1

2
‖v‖20 −

1

p

∣∣v+
∣∣p
p

for all v ∈ H.

We put

M0 =
{
v ∈ H1(R) \ {0} : ‖v‖20 =

∣∣v+
∣∣p
p

}
and

c0 = inf
{
I0 (v) : v ∈M0

}
.

It is known that problem (1) has a radial solution U0 ∈ H1(RN )∩C2(RN ). The
solution U0 is the unique positive solution up to translation on RN . Moreover
U0 is the least energy solution of (1), i.e., I0(U0) = c0. We put S0 = |U0|pp .
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That is S0 = 2p
p−1c

0. Let x ∈ RN . We denote by Ux the function defined by

Ux(·) = U0(· − x). Then each Ux is a solution of problem (1).
Let µ ∈ (0, µ) and put

‖v‖2µ = |∇v|22 − µ
∫
|v|2

|x|2
for v ∈ H1(RN ).

Then ‖·‖µ is an equivarent norm with ‖·‖0(cf. [7]). It is known the homogeneous
problem

−∆u− µ u

|x|2
+ au = |u|p−2

u, u ∈ H(2)

u > 0 on RN

has a unique solution V0. The associated functional Iµ of (2) is

Iµ (v) =
1

2
‖v‖2µ −

1

p

∣∣v+
∣∣p
p
, v ∈ H.

We put

Mµ =
{
v ∈ H1(R) \ {0} : ‖v‖2µ =

∣∣v+
∣∣p
p

}
.

It is obvious that cµ < c0, where

cµ = Iµ (V0) = inf {Iµ (v) : v ∈Mµ} .
.
Next we define the functional associated with the problem (P ) by

Iµλ,η (v) =
1

2
‖v‖2µ −

1

p

∣∣v+
∣∣p
p
− λ 〈v, f (· − η)〉 , for v ∈ H.

We also set

Mµ
λ,η =

{
v ∈ H1(R)\ {0} : ‖v‖2µ =

∣∣v+
∣∣p
p

+ λ 〈v, f (· − η)〉
}
.

One can see that each nontrivial critical point is contained in Mµ
λ,η. Similarily,

we put

I0
λ (v) =

1

2
‖v‖20 −

1

p

∣∣v+
∣∣p
p
− λ 〈v, f〉 , for v ∈ H

and

M0
λ =

{
v ∈ H1(R) \ {0} : ‖v‖20 =

∣∣v+
∣∣p
p

+ λ 〈v, f〉
}
.

One can see that each critical point u ∈ H1(RN ) of I0
λ is a solution of problem

−∆u+ au = |u|p−2
u+ λf in RN ,

u > 0

u ∈ H
For each λ > 0 and v ∈ H+, we put

gλ,v (t) =
d

dt
I0
λ (tv) = t2 ‖v‖20 − t

p |v|pp − t 〈f, v〉 , t > 0. (3)
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Then there exists λ > 0 such that if λ ∈
(
0, λ
)

and v ∈ H+, there exist tλ,v,−,
tλ,v,+ > 0 such that 0 < tλ,v,− < tλ,v,+ and gλ,v (tλ,v,−) = gλ,v (tλ,v,+) = 0.
That is M0

λ =M0
λ,− ∪M0

λ,+, where

M0
λ,− =

{
tλ,v,−v : v ∈ H+

}
and M0

λ,+ =
{
tλ,v,+v : v ∈ H+

}
.

One can see I0
λ (tλ,v,+v) = maxt>0 I

0
λ (tv) and I0

λ (tλ,v,−v) = min0<t<tλ,v,+ I
0
λ (tv) .

We also have

c0λ,− < 0 < c0λ,+ < c0λ,− + c0, (4)

where

c0λ,+ = inf
{
I0
λ (v) : v ∈M0

λ,+

}
and c0λ,− = inf

{
I0
λ (v) : v ∈M0

λ,−
}

(cf.[2], [6]).
It follows from [5], [4] that problem (3) has solutions uλ,+ ∈ M0

λ,+, uλ,− ∈
M0

λ,− such that

I0
λ (uλ,+) = c0λ,+ and I0

λ (v) = c0λ,−.

Lemma 2.1.

lim
λ→0

sup
{
|v|p : v ∈M0

λ,−

}
= 0

Proof. Let v ∈ M0. Then by [5], [4] we have that for λ ∈
(
0, λ
)
, there exists

t > 0 such that tv ∈M0
λ,−. From the equation

t2 ‖v‖2µ = tp
∣∣v+
∣∣p
p

+ tλ 〈f, v〉 ,

one can see that t = tλ,v,− → 0 as λ→ 0. Since∣∣t (1− tp−2
)∣∣ = λ

|〈f, v〉|
‖v‖20

≤ λ
‖f‖H−1

‖v‖0
,

we have

|tv|p ≤ 2λ
‖f‖H−1 |v|p
‖v‖0

≤ 2Cλ ‖f‖H−1 for λ sufficiently small,

where C > 0 is a constant such that |w|p ≤ C ‖w‖0 for w ∈ H. Since v ∈ H+ is
arbitrary, the assertion follows. �

For each µ ∈ (0, µ) , λ > 0, η > 0 and v ∈ H+, we put

gµ,λ,η,v (t) =
d

dt
Iµλ,η (tv) = t2 ‖v‖20 − t

p |v|pp − t 〈f (· − ηe) , v〉 , t > 0. (5)

Then there exists λ0 > 0 such that if λ ∈ (0, λ0) and v ∈ H+, there exist
tµ,λ,η,v,−, tµ,λ,η,v,+ > 0 (simply we write tv,−, tv,+ ) such that 0 < tv,− < tv,+
and gµ,λ,η,v (tv,−) = gµ,λ,η,v (tv,+) = 0. That isMµ

λ,η =Mµ
λ,η,−∪M

µ
λ,η,+, where

Mµ
λ,η,− =

{
tv,−v : v ∈ H+

}
and Mµ

λ,η,+ =
{
tv,+v : v ∈ H+

}
.

By a slight modification of the arguments in [2] and [6], we can prove the follow
theorem:
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Theorem 2.2. There exists λ0 > 0 such that for λ ∈ (0, λ0) and µ ∈ (0, µ) ,

0 < cµλ,η,+ < cµλ,η,− + c0, (6)

where

cµλ,η,+ = inf
{
Iµλ,η (v) : v ∈Mµ

λ,η,+

}
and cµλ,η,− = inf

{
Iµλ,η (v) : v ∈Mµ

λ,η,−

}
.

The proof of Theorem 2.2 is almost same as the proof for (4) . Then we omit
the proof. By (6) , we have that for λ ∈ (0, λ0) , µ ∈ (0, µ) and η ∈ R, there
exist solutions uµ,λ,η,−, uµ,λ,η,+ ∈ H of (P ) such that Iµλ,η (uµ,λ,η,−) = cµλ,η,−
and Iµλ,η (uµ,λ,η,+) = cµλ,η,+. We also have that (6) implies

Lemma 2.3. For λ ∈ (0, λ0) and µ ∈ (0, µ) ,

lim
η→∞

cµλ,η,− = c0λ,− and lim
η→∞

cµλ,η,+ = min
{
c0λ,+, c

µ + c0λ,−
}
.

Proof. Let λ ∈ (0, λ0) and µ ∈ (0, µ) . Let η > 0 and vη ∈ H be a solution of
(P ) . Then for given ϕ ∈ C1

0

(
RN
)
,

lim
η→∞

〈
−∆vη −

µ

|x|2
vη − |vη|p−2

vη − f (· − ηe) , ϕ

〉
= lim
η→∞

〈
−∆vη −

µ

|x|2
vη − |vη|p−2

vη, ϕ

〉
and

lim
η→∞

〈
−∆vη −

µ

|x|2
vη − |vη|p−2

vη − f (· − ηe) , ϕ (· − ηe)

〉
= lim
η→∞

〈
−∆vη − |vη|p−2

vη − f (· − ηe) , ϕ (· − ηe)
〉
,

we find that vη has the form vη = vη,1 + vη,2, where lim
η−→∞

∇Iµ (vη,1) = 0 and

lim
η−→∞

∇I0
λ (vη,2 (· − ηe)) = 0. Suppose that Iµλ,η (vη) = cµλ,η,− for η > 0. By the

minimality of cµλ,η,−, we have, noting that Iµ (vη,1) ≥ 0, that lim
η−→∞

∇Iµλ,η (vη) =

lim
η−→∞

∇Iµλ,η (vη,2) = c0λ,−. If Iµλ,η (vη) = cµλ,η,+ for η > 0, we find that (i)

lim
η−→∞

Iµ (vη,1) = 0 and lim
η−→∞

∇Iµλ,η (vη,2) = c0λ,+, or (ii) lim
η−→∞

Iµ (vη,1) = cµ

and lim
η−→∞

∇Iµλ,η (vη,2) = c0λ,−. Then by the definition of cµλ,η, the assertion

follows. �

3. Proof of Theorem

Throughout this section, we fix µ ∈ (0, µ.) . Let R0 > 0 such that∫
BR0

(0)

|U0|p >
2

3
S0 and

∫
BR0

(0)

|Vµ|p >
2

3

∫
|Vµ|p . (7)
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For each v ∈ Lp
(
RN
)
, we set

v̂(x) =

∫
BR0

(x)

|v|p for x ∈ RN

and

Ω (v) =

{
x ∈ RN : v̂(x)−

|v̂|∞
2

> 0

}
. (8)

We also set

β (v) =

∫
Ω(v)

x
(
v̂(x)− |v̂|∞2

)
∫

Ω(v)

(
v̂(x)− |v̂|∞2

) for v ∈ Lp
(
RN
)
.

The mapping β is called generalized barycenter, which was introduced in [3](cf.
also [1]).

By Lemma 2.1, we can choose λ0 > 0 so small that that∫
|uλ,−|p <

1

3

∫
|Vµ|p for λ ∈ (0, λ0) . (9)

Lemma 3.1. (1) There exists R1 > 0 such that

β (sηVµ + uλ,− (· − ηe)) ⊂ BR1
(0) (10)

and

β (tη (uλ,+ (· − ηe))) ⊂ BR1 (ηe) , (11)

where sη > 0 such that sη (Vµ + uλ,− (· − ηe)) ∈ Mµ
λ,η,+ for each η > 0, and

tη > 0 such that tηuλ,+ (· − ηe) ∈Mµ
λ,η,+ for η > 0.

(2) lim
η−→∞

Iµλ,η (sη (Vµ + uλ,− (· − ηe))) = cµ+c0λ,− and lim
η−→∞

Iµλ,η (tηuλ,+ (·+ ηe)) =

c0λ,+.

Proof. Let λ ∈ (0, λ0) . For simplicity, we put vη = uλ,− (· − ηe) for η > 0. Then

‖sηVµ + vη‖2η =
∣∣sηVµ + vη

∣∣p
p

+ λ 〈f (· − ηe) , sηVµ + vη〉 for η > 0.

Noting that infη>0 〈f (· − ηe) , vµ〉 > 0,one can see 0 < infη>0 sη < supη>0 sη <

∞. Then since ‖sηVµ + vη‖2µ − ‖sηVµ‖
2
µ − ‖vη‖

2
0 → 0,

∣∣sηVµ + vη
∣∣p
p
− |sηVµ|pp −∣∣vη∣∣pp → 0 and 〈f (· − ηe) , Vµ〉 → 0, as η →∞,(

‖sηVµ‖2µ + ‖vη‖20
)
−
(
|sηVµ|pp +

∣∣vη∣∣pp)− λ 〈f (· − ηe) , vη〉

= s2
η ‖Vµ‖

2
µ − s

p
η |Vµ|

p
p → 0 as η →∞.

This implies sη → 1, as η →∞. Then by (8)∣∣∣(sηV̂µ + vη)(x)
∣∣∣
∞
≥
∫
BR0

(0)

|sηVµ + vη|p >
2

3

∫
|Vµ|p
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for η sufficiently large. On the other hand, we have by (9) that

(sηV̂µ + vη) (x) =

∫
BR0

(x)

|sηVµ + vη|p <
1

3

∫
|Vµ|p

for all η > 0 and |x| sufficiently large. That is there exists R > 0 such that

Ω (sηVµ + vη) ⊂ BR (0) for η sufficiently large.

Then from the definition of β,

β (sηVµ + vη) ⊂ BR (0) for η sufficiently large.

Therefor by taking R1 > 0 large, we obtain (10). By a parallel argument as
above, we have tη → 1 as η →∞. Let R > 0 such that β(uλ,+) ⊂ BR (0) . Then
we find

β (tηuλ,+ (· − ηe)) ⊂ BR (ηe) for η sufficiently large.

Therefore again by taking R1 > 0 large, we obtain (11). �

Lemma 3.2. For each λ ∈ (0, λ0) ,{
β (v) : v ∈Mµ

λ,η, I
µ
λ,η (v) < c0 + cµλ,η,−

}
= RN .

Proof. Let λ ∈ (0, λ0) . To prove the assertion, it is sufficient to show

sup
t>0

{
Iµλ,η (tUx + uµ,λ,η,−)

}
< c0 + cµλ,η,− for all x ∈ RN . (12)

Let x ∈ RN . For simplicity, we put U = Ux, u = uµ,λ,η,− and fη = f(· − ηe).
From the definition of Iµλ,η,

Iµλ,η (tU + u) =
1

2
‖tU + u‖2µ −

1

p
(tU + u)

p − 〈fη, tU + u〉

≤ 1

2
‖tU‖20 +

1

2
‖u‖2µ + 〈∇tU,∇u〉+ a 〈tU, u〉 − µ

|x|2
〈tU, u〉

− 1

p
(tU + u)

p − 〈fη, tU + u〉 .

Then noting that

〈∇tU,∇u〉+ a 〈tU, u〉 − µ

|x|2
〈tU, u〉 − 〈fη, tU〉 =

〈
up−1, tU

〉
≤
∫
{u>tU}

tUup−1 +

∫
{u≤tU}

(tU)p−1u,

1

2
‖tU‖20 −

1

p
(tU)

p ≤ c0 and
1

2
‖u‖2µ −

1

p
up − 〈fµ, u〉 = cµλ,η,−,
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we have

Iµλ,η (tU + u) ≤ c0 + cµλ,η,− +

∫ (
1

p
(tU)

p
+

1

p
up
)

(13)

+

∫
{u>tU}

tUup−1 +

∫
{u≤tU}

(tU)p−1u− 1

p

∫
(tU + u)

p
.

Noting 1
p <

p−1
2 , we have by Taylar expansion that∫
{u>tU}

(
1

p
up +

1

p
(tU)

p
+ tUup−1 − 1

p
(tU + u)

p

)
(14)

=

∫
{u>tU}

(
1

p
(tU)

p − p− 1

2
(θU + (1− θ)u)

p−2
(tU)

2

)
< 0

and ∫
{u<tU}

(
1

p
up +

1

p
(tU)

p
+ (tU)p−1u− 1

p
(tU + u)

p

)
(15)

=

∫
{u>tU}

(
1

p
up − p− 1

2
(θ′U + (1− θ′)u)

p−2
u2

)
< 0,

where 0 < θ, θ′ < 1. Then combining (13) , (14) and (15) , we obtain (12) . �

Lemma 3.3. Let λ ∈ (0, λµ) . Then

c∞λ = lim inf
R→∞

{
Iµλ,4Re (v) : v ∈Mµ

λ,η,+, β (v) ∈ B3R (4Re) \B2R (4Re)
}

= c0+c0λ,−.

Proof. By Lemma 3.2, we have c∞λ ≤ c0 + c0λ,−. We will show c∞λ ≥ c0 +

c0λ,−. Let {Rn} ⊂ R and {un} ⊂ Mµ
λ,η,+ be sequences such that lim

n−→∞
Rn =

∞, lim
n−→∞

Iµλ,4Rn (un) = c∞ and β (un) ∈ B3Rn (4Rne) \B2Rn (4Rne) . Then

by the concentrate compactness lemma, we have that there exist sequences
{vn} , {wn} ⊂ H such that lim

n−→∞
‖un − vn − wn‖µ = 0, lim infn→∞

∫
|vn|p > 0

and lim
n−→∞

dist (supp vn, supp wn) =∞. It then follows that

lim
n−→∞

∇Iµλ,4Rn (vn) = lim
n−→∞

∇Iµλ,4Rn (wn) = 0.

We may assume lim
n−→∞

dist (supp vn, 4Rne) =∞. Then noting that lim
n−→∞

〈f (· − 4Rne) , vn〉 =

0, we have

lim inf
n→∞

Iµλ,4Rn (vn) = lim inf
n→∞

Iµ (vn) ≥ cµ.

If lim infn→∞
∫
BR(0)

|vn| > 0 for some R > 0, then by subtracting subsequences

we have

vn → Vµ as n→∞ in Lp
(
RN
)

(16)
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and then lim
n−→∞

Iµλ,4Rn (vn) = cµ. If lim infn→∞
∫
BR(0)

|vn| = 0 for any R > 0,

then again by subtracting subsequences we have that there exists a sequence
{xn} ⊂ RN such that lim

n−→∞
|xn| =∞ and

vn − Uxn → 0 as n→∞ in Lp
(
RN
)

(17)

and then lim
n−→∞

Iµλ,η (vn) = c0. On the other hand, we have lim infn→∞ I0
λ (wn) ≥

c0λ,−.

Case 1. lim infn→∞
∫
BR(4Rne)

|wn| > 0 for some R > 0. In this case, by

subtracting subsequences, we have wn − uλ,− (· − 4Rne) → 0 as n → ∞ in
Lp
(
RN
)

and then lim
n−→∞

Iµλ,4Rn (wn) = c0λ,−. If lim
n−→∞

vn = Vµ, we have by

(7) , (9) and (8) that there exists R > 0 such that Ω (un) ⊂ BR (0) for n
sufficiently large. Thus we find β (un) ⊂ BR (0) for n sufficiently large. This is
a contradiction. Therefore (17) holds and then

lim
n−→∞

Iµλ,4Rn (un) = lim
n−→∞

Iµλ,4Rn (vn) + lim
n−→∞

Iµλ,4Rn (wn) = c0 + c0λ,−.

Case 2. lim infn→∞
∫
BR(4Rne)

|wn| = 0 for any R > 0. If (16) holds, then

by the definition, lim infn→∞
∫
BR(0)

|wn| = 0 holds for all R > 0. Therefore by

subtracting subsequences we have that there exists a sequence {yn} ⊂ RN such
that lim

n−→∞
|yn| =∞ and

wn − Uyn → 0 as n→∞ in Lp
(
RN
)
. (18)

That is lim
n−→∞

Iµλ,4Rn (un) = lim
n−→∞

Iµ (vn) + lim
n−→∞

I0 (wn) = cµ + c0. Since cµ +

c0 > c0 + c0λ,−, this is a contradiction. Next, we assume that (17) holds. Then

by a parallel argument as above, we obtain lim
n−→∞

Iµλ,4Rn (un) = lim
n−→∞

Iµ (vn) +

lim
n−→∞

Iµ (wn) ≥ c0 +cµ. This contradicts to the assumption. Thus the assertion

follows.. �

Lemma 3.4. For each η > 0,

c∞η = lim inf
R→∞

{
Iµλ,η, (v) : v ∈Mµ

λ,η,+, β (v) ∈ RN\BR (0)
}
≥ c0 + cµλ,η,−. (19)

Proof. Let η > 0. Let {Rn} ⊂ R and {un} ⊂ Mµ
λ,η,+ be sequences such

that lim
n−→∞

Rn = ∞, β (un) ∈ RN\BRn (0) and lim
n−→∞

Iµλ,ηe (un) = c∞η . Then

by the concentrate compactness lemma, we have that there exist sequences
{vn} , {wn} ⊂ H such that lim

n−→∞
‖un − vn − wn‖µ = 0, lim infn→∞

∫
|vn|p > 0

and lim
n−→∞

dist (supp vn, supp wn) =∞. It then follows that lim
n−→∞

∇Iµλ,η (vn) =

lim
n−→∞

∇Iµλ,η (wn) = 0. We may assume lim
n−→∞

dist (supp vn, 0) =∞. Then not-

ing that lim
n−→∞

〈f (· − ηe) , vn〉 = 0 and lim
n−→∞

(‖vn‖µ − ‖vn‖0) = 0, we have
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lim infn→∞ Iµλ,η (vn) = lim infn→∞ I0 (vn) = c0. On the other hand, we have

lim infn→∞ I0
λ (wn) ≥ c0λ,η,−. Therefore

lim
n−→∞

Iµλ,η (un) = lim
n−→∞

Iµλ,η (vn) + lim
n−→∞

Iµλ,η (wn) ≥ c0 + c0λ,η,−.

This completes the proof. �

Proof of Theorem First, we choose c > 0 such that

max
{
cµ + c0λ,−, c

0
λ,+

}
< c < c0 + c0λ,−.

Then by Lemma 3.1, Lemma 3.3 and Lemma 3.4, we can choose η so large that

inf
{
Iµλ,η (v) : v ∈Mµ

λ,η,+, β (v) ⊂ BR1
(0)
}
< c, (20)

inf
{
Iµλ,η (v) : v ∈Mµ

λ,η,+, β (v) ⊂ BR1
(ηe)

}
< c, (21)

inf
{
Iµλ,η (v) : v ∈Mµ

λ,η,+, β (v) ⊂ B3η/4 (ηe) \Bη/2 (ηe)
}
> c (22)

and

inf
{
Iµλ,η (v) : v ∈Mµ

λ,η,+, β (v) ⊂ RN\B2η (0)
}
> c. (23)

Then by (20) , (22) and (23) , there exists u1 ∈Mµ
λ,η,+ such that

Iµλ,η (u1) = inf
{
Iµλ,η (v) : v ∈Mµ

λ,η,+, β (v) ⊂ B2η (0) \B3η/4 (ηe)
}
. (24)

While by (21) and (22) , there exists u2 ∈Mµ
λ,η,+ such that

Iµλ,η (u2) = inf
{
Iµλ,η (v) : v ∈Mµ

λ,η,+, β (v) ⊂ Bη/2 (ηe)
}
. (25)

Next we set

M =
{
ρ ∈ C

(
[0, 1];Mµ

λ,η,+

)
: ρ (0) = u1, ρ (u2) = u3

}
and

cm = min
ρ∈M

max
t∈[0,1]

Iµλ,η (ρ (t)) .

By Lemma 3.2 and (22) , we have c < cm < c0 + cµλ,η,−. Then noting (19)
holds, we have by a mountain pass argument that there exists a critical point
u3 ∈ Mµ

λ,η,+ of Iµλ,η such that Iµλ,η (u3) = cm. On the other hand, we already

know by Theorem 2.2 that there exists a solution u0 ∈Mµ
λ,η,− of (P ) . Therefore

we find problem (P ) has at least four solutions u0, u1, u2, u3 ∈ H as claimed.
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