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MULTIPLE EXISTENCE OF SOLUTIONS FOR A
NONHOMOGENEOUS ELLPITIC PROBLEMS ON RY

NoriMICHI HIRANO AND WAN SE Kim

ABSTRACT. Let N >3, 2* =2N/(N —2) and p € (2,2*). Our purpose in
this paper is to consider multiple existence of solutions of problem

—Au—#—i—au = |uP72u+ Af u€ H (RN),
where a,A >0, p € (0,(N —2)2/4) fe H-* (RN), f>0and f £Z0.

1. Introduction

Let N >3, f € L*(RY) with f > 0 and f # 0, and p € (2, 2*), where
2* = 2N/(N — 2). Nonhomogeneous problem
—Au+au = w4+ Nf in RV
u > 0 in RN (Po)

u € HYRY)

has been investigated by many authors. Here a > 0 and A > 0. On the multiple
existence of solutions, Zhu[7] proved the existence of two positive solutions uy, us
€ HY(RY) of problem (P) for f sufficiently small and having an exponental
decay. The first solution u; is close to 0 and the second solution us is obtained
by mountain path argument. This result was improved in [4] and [5]. In [2] and
[6], it was shown that there exists M > 0 sych that for each f € H~! (RY)
satisfying || fl|;-» < M, f > 0, f # 0, problem (P) possesses at least two
positive solutions. That is norm || f|| ;-. determines the mountain pass structure
and causes multiple existence of the solutions. It is interesting what the nature
of function f affects the multiplicity of the solutions. In [2,4,5,6,8], the authors
investigated that some profiles of function f cause multiplicity of the solutions.
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Our purpose in the present paper is to consider the multiplicity of solutions
of problem

*AU*H#Jrau = |ul"Pu+ A (-—ne) in RY
u > 0 inRY  (P)
u € HYRY)

where 0 < pp < i = (N —2)* /4, e € RY with |e¢| = 1 and € R. For problem
(Py), transition of f does not give any effect to the number of solutions, i.e.
problem (Fp) is equivarent to problem (FPp) with f replaced f (- — ne) for any
e € RY with |e|] = 1 and n € R. We will show, under the presence of Hardy
term, the effect of the translation of f and [|f|[;-1 g~y on the multiplicity of
solutions of (P).

Our main result is as follows:

Theorem 1.1. There exist A\g > 0 and 19 > 0 such that for each p € (0,7),
the followings hold;
(1) for each A € (0, Xg) and n € R, problem (P) has at least two solutions;
(2) for each A € (0, A9) and n € R\ (—no,n0) , problem (P) has at least four
solutions.

2. Preliminaries
We denote by B,(x) the open ball in RV centered at 2z and radius r. For
each ¢ € [1,00], we denote by |-, the norm of L4(RYN). For simplicity we put
H = H*(RY). For u,v € H, we put (u,v) = [pn uv dz. We denote by |||, the
norm of H defined by ||v||(2) = \VU|§ + alv|, for v € H. Put u™ = max {0,u}
and v~ = min{0,u} for v € H. We denote by H* a subset defined by

H*z{veH:er;‘éO}.
We denote by VF : H — H the gradient of the functional F. First, we retrieve
some known results for the homogeneous problem
“Avtav = [Pl veH. (1)
v > 0 on RV,
We denote by I° : H — R the functional associated with the problem (1), i.e.,

1 1
I°(v) = 5 ]|z — 5 lt[? forallv e H.

We put
MO = {ve H'®R)\ {0}« o]y = [o* [}
and
& =inf {I° (v) : v € M"}.
It is known that problem (1) has a radial solution Uy € H*(RY)NC2?(RY). The

solution Uy is the unique positive solution up to translation on RY. Moreover
Up is the least energy solution of (1), i.e., I°(Up) = °. We put S° = [Upl; .
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That is S° = %co. Let z € RY. We denote by U, the function defined by
U.(-) = Up(- — ). Then each U, is a solution of problem (1).
Let p € (0,f) and put

o

Hv||i: \Vv|§—,u for v € H'(RM).

Eh
Then |[|-||,, is an equivarent norm with [|-[|o(cf. [7]). It is known the homogeneous
problem

(2) —AU—M#+au=|u|p72u7 ueH
X

u>0 on RY

has a unique solution Vj. The associated functional I* of (2) is

1. ., 1
@) = 5 ol ot

z, veH.
We put
mr = {ve B ®)\ {0} : ol = [0}
It is obvious that ¢, < cg, where
¢y =I" (Vo) = inf {I* (v) : v € MM},

Next we define the functional associated with the problem (P) by
1, .2 1
By @)= 5ol = ot [ = Ao f (=), forve H.

We also set
MG, = {v e H'®RN\0} : lo]2 = [o*]2 + A v, F (- =m) }
One can see that each nontrivial critical point is contained in Mi,n‘ Similarily,
we put
1 1

I (v) = 5 ofl2 = ; [0t [P = A, f), forveH
and

MS = {v e B R\ {0}« lollf = [o* 2+ Ado, )}

One can see that each critical point v € H(RY) of I{ is a solution of problem

—Au+au = [ulfPu+ Af in RY,
u >0
ue H
For each A > 0 and v € HT, we put

d
gaw (t) = %Ig (tv) = £ ||v]|3 — 7 [0]2 — ¢ (f,v) .t > 0. (3)



706 N. HIRANO AND W. S. KIM

Then there exists A > 0 such that if A € (O,X) and v € H™, there exist ty, _,
taw+ > 0such that 0 < €y < txp+ and gaw (taw,—) = gaw (Erw+) = 0.
That is M{ = M%_ U Mg7+, where

/\/19\,, = {trv,-v:v€EH'} and ./\/l())\’Jr ={trov:vEH}.

One can see IY (ty , +v) = maxsso I3 (tv) and IY (), —v) = ming<s<t, , 4 19 (tv).
We also have
c)\_<0<c(>)\,+<cg7_—|—co, (4)
where
c(;\’Jr =inf {I (v) : v € /\/lg’+} and c‘;’, =inf {I3 (v) : v € /\/107,}

(ct.[2], [6]).

It follows from [5], [4] that problem (3) has solutions ux 4 € M3 |, ux - €
Mgv_ such that

B (un) = &, and 1 (0) =
Lemma 2.1.

)1\i_,mOsup {|U\p NS M%_} =0
Proof. Let v € M. Then by [5], [4] we have that for A € (0,X), there exists
t > 0 such that tv € ./\/19\7_. From the equation

£ |lolly, = 7 [o* [} + tA (£, 0),

one can see that t =ty , - — 0as A — 0. Since

PR SRN 15 I P

||UH0 B ||U||0
we have
1Al g1 [0, :
[tv], < ZAW < 20N | fll -1 for A sufficiently small,
0
where C' > 0 is a constant such that |w|, < C'[lw||, for w € H. Since v € H* is
arbitrary, the assertion follows. O

For each p € (0,71) ,A > 0,7 >0 and v € H", we put
d 2
Guam (1) = 2 I, () = 8 Jollg = 7 [ol; = ¢ (f (- = ne) ,v) ,£ > 0. (5)
Then there exists A\g > 0 such that if A\ € (0,\p) and v € H™, there exist
tuamw,—s turmw+ > 0 (simply we write ¢, —,t, 4 ) such that 0 <, _ < t, 4+
and gy x50 (to,—) = guamo (to,+) = 0. That is MY = MY UMK, where

My, = {t,—v:ve H"} and My, = {tvﬁv cve HT}.

By a slight modification of the arguments in [2] and [6], we can prove the follow
theorem:
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Theorem 2.2. There exists A\g > 0 such that for X\ € (0, ) and p € (0,7),

0<dcy, . <c, _+co, (6)
where
e p : p O n . p
Ay = inf {IA-,n (v):ve M)\,n,+} and ¢y, _ = inf {IA,n (v):ve MA,n,f} .

The proof of Theorem 2.2 is almost same as the proof for (4). Then we omit
the proof. By (6), we have that for A € (0,\), ¢ € (0,7) and n € R, there
exist solutions wy x5~ tu,xn+ € H of (P) such that I\ (uuxn-) =, _
and Iy, (uxn+) = cy, . We also have that (6) implies

Lemma 2.3. For A € (0, o) and p € (0,7) ,

. n _ 0 . " _ [0 w0
77hﬁnolo oy = Cx— and 77hﬁnolO ) 4 = Min {C)\7+,C + C/\7_} .

Proof. Let A € (0,X) and p € (0,fx). Let » > 0 and v, € H be a solution of
(P). Then for given ¢ € C§ (RV),

n—o0 n—o0

: 1 - . 1 -
lim <Avn - W”n = lvyl? 21’71 = f(-—ne) ,80> = lim <A'Un - W”n — vy [? 2”na¢>

and

n—o0

: © _
lim <Av77 - W’un — o vy — f (- —me), o (- — ne)>
= lim (=Av, v, v, = £ (- =€) ¢ (- = e)),
we find that v, has the form v, = v, ; + v, 2, where lim VI* (v, 1) = 0 and
’ 7—>00

nli_r)noo VIS (vy2 (- = me)) = 0. Suppose that I}, (v,) = ¢k, _ for n > 0. By the
minimality of ¢y , _, we have, noting that I (v,,1) > 0, that nli_r)noo VI, (vy) =
77li_r>noo VI{, (vy2) = & . I I}, (vy) = ¢, , for n > 0, we find that (7)
nl.gyoo]# (Ufhl) =0 and r,hi)noo Vfin (’l}n,g) = Cg’+7 or (ZZ) nh;r)n00 I+ (’l}n,l) = ct

and lim VI{, (vy2) = ¢} _. Then by the definition of ¢}, the assertion
n—eo | 7 :
follows. U

3. Proof of Theorem
Throughout this section, we fix p € (0,7.). Let Rg > 0 such that

2 2
/ |Uol? > =8° and / V. IP > f/|vﬂ|p. (7)
Bry (0) 3 Bry (0) 3

0
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For each v € LP (RN) , we set

(x) = / [v]? for x € RY
Br (z)

and
0]

Q(v):{meRNzﬁ(x)—;‘”>0}. (8)

We also set

— fQ(U) r (6(33) _ 15200) forv e LP (RN) )
Joww (ﬁ(x) B %)

The mapping f is called generalized barycenter, which was introduced in [3](cf.
also [1]).
By Lemma 2.1, we can choose A\g > 0 so small that that

1
ﬁuA,_W < ﬁmp for A € (0, o). )

B (v)

Lemma 3.1. (1) There exists Ry > 0 such that

B (syVi +ux— (- —ne)) C B, (0) (10)
and

B (ty (ur+ (- —me))) C Br, (ne), (11)
where s, > 0 such that s, (V, +ux— (- —ne)) € Ml;er for each n > 0, and
t, > 0 such that tyux 4 (- —ne) € M§7n7+ forn > 0.

(2) nli—>rnoo 1§, (sy (Vi +ux - (- —ne))) = c+c} _ and nli_r)noo 1L (tyus g (- +1e)) =
0
A4
Proof. Let A € (0, Ag) . For simplicity, we put v, = ux _ (- — ne) for n > 0. Then
llsn V. + v7,||727 = ’s,,VH + vn’z +A(f(-—mne),s,V, +vy,) forn>0.

Noting that inf,~ (f (- — ne),v,) > 0,0ne can see 0 < inf, >0 s, < sup,~q sy <

. 2 2 2 P
oo. Then since ||s,V,, + UWH# — HanHHH —lvgllg = 0, |5nVu + ”77|p — |S’7VN|Z _

‘Un‘z — 0 and (f (- —ne),V,) =0, as n — o0,
2 2
(Va2 + 10ali2) = (1saVil2 + [0, 7) = ACF = me) vy
= s, ||V/AHZ = sh[Vu[) = 0 as n — oo.

This implies s,, — 1, as 7 — co. Then by (8)

—

2
‘(anu +vn)(x)’ > / |8y Vi + vy [P > 3 ﬁVMP
> Bry (0)



EXISTENCE OF SOLUTIONS FOR A ELLPITIC PROBLEMS ON RY 709

for n sufficiently large. On the other hand, we have by (9) that
1
(59 Vi +v,) (@) = / |59 Vi + vy < 3 ﬁV#|p
BRO (ZE)

for all n > 0 and |x| sufficiently large. That is there exists R > 0 such that
Q(s,V,, +v,) C Br(0) for n sufficiently large.

Then from the definition of 3,
B (syVyu +vy) C Br(0) for n sufficiently large.

Therefor by taking R; > 0 large, we obtain (10). By a parallel argument as
above, we have t,, = 1 as n — oo. Let R > 0 such that S(ux ) C Br(0). Then
we find

B (tyux+ (- —me)) C Br (ne) for n sufficiently large.
Therefore again by taking Ry > 0 large, we obtain (11). O
Lemma 3.2. For each X € (0, Ao),
{B)ve My, 1, )<+, } =RV,
Proof. Let A € (0, Ag) . To prove the assertion, it is sufficient to show

sup {Iﬁin (tU, + u#’A,n,,)} <+ - for all z € RY. (12)
t>0 o

Let € RY. For simplicity, we put U = Uy, u = uy r,— and f, = f(- — ne).

From the definition of ];\‘n,

1
I, (tU +u) = 5 [[tU + ully = = (tU + w)? — (£, tU + )

1

p
1 2 1, o H

< 3 1tU || + 3 [ull, + (VtU, Vu) + a (tU, u) — 7 (tU, u)
x
1
—E(tU—i—u)p— (fn, tU +u).
Then noting that

(VU, V) + a (tU, u) — # (U, u) = (fp, tU) = (uP™ 1 tU)
X

g/ tUup_1+/ (tU)P~tu,
{u>tU} {u<tU}

1, 5 1 1, 5 1
3 1tU Ny — » (tU)" < ¢” and 3 Jull, — Eu” = (fuw) =y, _,
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we have

1 1
(13) I§, (tU +u) < A+ N+ / (p (tU)? + pup>

1
+/ tUuP~? +/ (tU)P~tu — = / (tU +u)? .
{u>tU} {u<tU} p

Noting % < %_1, we have by Taylar expansion that

1 1 1
(14) / (u” + = (tU)P +tUuP™! — = (tU + u)p>
{u>tU} \P p p
1 -1 _
= / ( Uy — 2= (0U + (1 — 0) u)P 2 (tU)Q)
{u>tU} \P 2
<0
and
1 1 p -1 1 p
(15) —uP + = (U)" + (tU)P"u— = (tU + u)
{u<tU} \P p p
= / (1up _r1 (U +(1-0)u)’> u2>
{u>tU} \P 2
<0,

where 0 < 0,6 < 1. Then combining (13), (14) and (15), we obtain (12). O
Lemma 3.3. Let A € (0,\,). Then

g = liminf {1;438 (v):v e MY, . B(v) € B (4Re) \Bag (436)} = 4 .

o0

Proof. By Lemma 3.2, we have ¢° < ¢ + & _. We will show ¢° > ¢ +
.. Let {R,} C R and {u,} C MY | be sequences such that lim R, =

A+ n—woo

oo, lim I¥,p (un,) = ¢ and B(u,) € Bsg, (4Rne)\Bag, (4R,e). Then
n—-> 00 yE )
by the concentrate compactness lemma, we have that there exist sequences
{vn}, {wn} C H such that lim |juy, — v, —wy]|, = 0, liminf, o [ [v,[” >0
n—oo

and lim dist (Supp vy, supp wy) = co. It then follows that
n—o0o0

S VIS g, (0n) = lim VI g, (wn) =0.

We may assume lim dist (supp vn,4R,e) = co. Then noting that lim (f (- —4Rne),v,) =
n—o0 n—oQ
0, we have

. e i T > 0
hnn_l)lg”mm, (Un) hnn_l)lo%fl (vp) > .

If liminf,, fBR(O) |vn| > 0 for some R > 0, then by subtracting subsequences
we have
v, =V, asn — 00 in LP(RN) (16)
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and then nhjlm I§,4Rn (vn) = . If liminf,, o fBR(O) |vn] = 0 for any R > 0,

then again by subtracting subsequences we have that there exists a sequence
{z,} C RY such that lim |z,|= oo and
n—oo

v, — Uy, — 0 asn — oo in L? (RY) (17)

and then nli_1>noo Iﬁf,n (vn) = . On the other hand, we have lim inf,, o0 15 (w,,) >
S

Case 1. liminf,,_ oo fBR(4Rne) |wyp| > 0 for some R > 0. In this case, by
subtracting subsequences, we have w, — ux_ (- —4R,e) — 0 as n — oo in
L? (RN) and then hm I)\ ar, (Wn) = cg If hm v, = Vj, we have by

(7), (9) and (8) that there exists R > 0 such that Q(un) C Bgr(0) for n
sufficiently large. Thus we find 8 (u,) C Br (0) for n sufficiently large. This is
a contradiction. Therefore (17) holds and then

. 1 _ . 14 3 14 _ 0 0
im T3 g, (un) = Hm Ty e (o) + lm T3, (wn) = ¢ 4 ey

Case 2. liminf, o fBR(4Rne) |lw,| = 0 for any R > 0. If (16) holds, then
by the definition, liminf,,_, fBR(o) |wy,| = 0 holds for all R > 0. Therefore by

subtracting subsequences we have that there exists a sequence {y,} C RY such
that lim |y,| = oo and
n—oo

wn—Uyn—>0asn—>ooian(]RN). (18)
. . m _ . m . 0 _ 0 . m
That is nh_I}nOO I3 4p, (un) nh_r)nool (vn) +nh_1>nool (wy,) = ¢+ . Since c* +

&>+ c&_, this is a contradiction. Next, we assume that (17) holds. Then
by a parallel argument as above, we obtain lim I{,, (u,) = lm I* (v,)+
n—> 00 yEn n—> 00

lim I* (w,) > ¢ +c*. This contradicts to the assumption. Thus the assertion
n—>oo

follows.. O

Lemma 3.4. For each n > 0,

co 72 : . N 0

o = 1g1£f{1§% () :ve My, B () € RN\Byg (0)} >y, L (19)
Proof. Let 7 > 0. Let {R,} C R and {u,} C M}, , be sequences such
that hm R, = oo, B (u,) € RN\Bpg, (0) and hm I)\ e (Un) = ¢°. Then

by the concentrate compactness lemma, we have that there exist sequences
{vn},{w,} C H such that lm |lu,, — v, —wy||, =0, iminf, . [|v,]|" >0
n—s00 s

and lim dist (supp v,,supp wy,) = oco. It then follows that lim Vlfn (vp) =
n—oo ’

n—=o0

lim VI{, (w,)=0. We may assume lim dist (supp v,,0) = co. Then not-
—o00

n—oQ

ing that nh£1m (f (- —ne),vy) = 0 and nhjlm(||vn\|u — |lvnlly) = 0, we have
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lim inf,, oo If\Ln (vn) = liminf, o I° (v,) = . On the other hand, we have
liminf, o0 IS (wy,) > Cg\,n,f' Therefore

. m T o : © 0 0
i I () = lim I (o)l I () > @,
This completes the proof. O
Proof of Theorem First, we choose ¢ > 0 such that
max {c“ + 637_,cg7+} <ec<®+ 637_.

Then by Lemma 3.1, Lemma 3.3 and Lemma 3.4, we can choose 7 so large that

inf {p;m (v):ve MY, B (v)C B, (o)} < (20)
inf {Iﬁ:n (v):ve MY, ,.B(v) C Bg, (176)} < e (21)

inf {1;(,, (v) :v € MY, ., B(v) C Baya (1€) \Byy (ne)} Se  (22)
and
inf {Iﬁ‘)n (v) :ve ML, B (v) CRV\By, (0)} > c. (23)

Then by (20),(22) and (23), there exists u; € MY . such that

14, (u1) = inf {Igm (v) ;v e MY, B (v) C Bay (0)\Bsya (776)} . (24)

While by (21) and (22) , there exists up € MY, | such that

T4, (ug) = inf {1;1,7 (v) :ve MY, B (W) C By (ne)} . (25)
Next we set
M={peC(l0,1:M, ) :p(0) =uip(u) = us}

and

em = mipy max I3, (p ()
By Lemma 3.2 and (22), we have ¢ < ¢, < ¢ + ¢, . Then noting (19)
holds, we have by a mountain pass argument that there exists a critical point
uzg € MY, | of Iy such that I\ (u3) = ¢;n. On the other hand, we already
know by Theorem 2.2 that there exists a solution ug € /\/lf\‘%_ of (P) . Therefore
we find problem (P) has at least four solutions wug,u1, us, uz € H as claimed.



EXISTENCE OF SOLUTIONS FOR A ELLPITIC PROBLEMS ON RY 713

References

[1] A. Name, Title of a paper, Math. Sci. Res. Inst. Publ. 5, Springer-Verlag, New York,
2000.

2] , Title of a paper, J. Math. 1 (2008), no. 1, 10-12.

[3] A. Name, B. C. Name, and D. Name, Title of a paper, J. Math. (2008), no. 1, 10-13.

[4] T. Bartsch and T. Weth Three nodal solutions of singularly perturbed elliptic equations
on domain without topology, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22(2005), 259-
281

[5] D. Cao and H. Zhu, Multiple Positive Solutions of for an inhomogeneous semilinear
elliptic equation in R™, Proc. Roy. Soc. Edinburgh. 126 (1996), 443-464

[6] G. Cerami and D. Passaseo, The effect of concentrating potentials in some sigularly per-
turbed problems, Calc. Var., 17(2003), 257-281 An inhomogeneous semilinear equation
in entire space J. Differential Equations 125(1996) 184-214

[7] Y. Deng and Y. Li Emistence of multiple positive solutions for a semilinear elliptic
equation Advances in Differential Equations 2(1997), 361-382

[8] N. Hirano Existence of entire positive solutions for non homogeneous elliptic equations
Nonlinear Analysis TMA 29(1997), 889-901

[9] X.Zhu A Perturbation result on positive entire solutions of a semilinear elliptic equation
J. Diff. Equations 92(1991), 163-178

NoriMicHI HIRANO

DEPARTMENT OF MATHEMATICS FACULTY OF ENGINEERING YOKOHAMA NATIONAL UNIVER-
SITY TOKIWADAI, HODOGAYAKU, YOKOHAMA, JAPAN

E-mail address: hira0918@ynu.ac. jp

WAN SE KM

DEPARTMENT OF MATHEMATICS, RESEARCH INSTITUTE FOR NATURAL SCIENCES,HANYANG
UNIVERSITY SEOUL 133-791, KOREA

E-mail address: wanskim@hanyang.ac.kr



