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INFINITELY MANY SOLUTIONS OF A WAVE
EQUATION WITH JUMPING NONLINEARITY

Q-HeunG CHOI AND TACKSUN JUNG

ABSTRACT. We investigate a relation between multiplicity of solu-
tions and source terms of jumping problem in a wave equation when
the nonlinearity crosses an eigenvalue and the source term is gener-
ated by finite eigenfunctions. We also show that the jumping prob-
lem has infinitely many solutions when the source term is positive
multiple of the positive eigenfunction.

1. Introduction

We investigate multiplicity of solutions u(z,t) for a piecewise linear
perturbation of the one-dimensional wave operator u;; —t,, under Dirich-
T T

let boundary condition on the interval (—%, 3) and periodic condition on
the variable t,

L) w—uetg)=f(ot) i (-53) xR
(1.2) u(£3,t) =0,
(1.3) u is 7 — periodic in t and even in z,

where we assume that g(u) = but —au™. When a string with nonuniform
density vibrates up and down, the upward restoring coefficient and the
downward restoring coeflicient of it are different. Hence it happens a
nonlinear perturbation in a wave equation. Here we assumed that the
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upward restoring coeflicient and the downward one in the vibrating of
the string are constant and they are different.
We let L the wave operator, Lu = uy; — ... Then the eigenvalue
problem for u(zx, )
T
Lu=> in ( 2,2)><R
with (1.2) and (1.3}, has infinitely many eigenvalues

Ame = 204+ 12 —dm?  (myn=0,1,2,.--)

and corresponding normalized eigenfunctions ¢mq, ¥ma(m,n > 0) given
by

2
don = £ cos(2n + 1)z for n >0,
T
2
Pmn = - o0S 2mtcos(2n + 1)z for m > 0,n >0,

2
Y = p sin2mtcos(2n + 1)z for m > 0,n > 0.

We note that all eigenvalues in the interval (—9,9) are given by
Ag1 =~ T < Ap=-3< dpg=1< My =5

Let @ be the square (—F, 5)x (-5, ) and H the Hilbert space defined
by
H={uel*Q):u isevenin z}.
Then the set of eigenfunctions {¢,n, ¥mn} is an orthonormal base in H.
Hence equation (1.1) with (1.2) and (1.3) is equivalent to

(1.4) Lu+bu™ —au” = f in H

In [2] the authors investigate multiplicity of solutions of (1.4) when
the nonlinearity —(but — au™) crosses the eigenvalue Ay and the source
term f is a multiple of the positive eigenfunction ¢q.

Our concern is to investigate a relation between multiplicity of solu-
tions and source terms of jumping problem (1.4) when the nonlinearity
—{bu™ — au~) crosses the eigenvalue Ay and the source term f is gener-
ated by three eigenfunctions ¢g, ¢10, Y10-

Let —1 < @ <1 and ¢ = 8¢1p++/1 — 82410, which is an eigenfunction
of L corresponding to Ayy. Let Hy be the subspace of H defined by

Hy = Span{{qﬁmmwmn : ¢mn 7é ¢10:71bmn 7é T'DID} U {ﬁbﬂ}}
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In Section 2, we suppose that the nonlinearity —(bu* — au™) crosses
an eigenvalue Ay and the source term f is generated by ¢gp and ¢p and
we investigate the existence of solutions of the equation

{1.4) Lu+but —au"=f in Hp

In Section 3, we reveal a relation between multiplicity of solutions and
source terms in equation (1.4") when f belongs to the two dimensional
space Vyp = span{do, ¢s}. In Section 4, we reveal a relation between mul-
tiplicity of solutions and source terms in equation (1.4) when f belongs
to the three dimensional space Vy = span{du, ¢10, %10} We also show
that (1.4) has infinitely many solutions in H when the source term 1s
positive multiple of the positive eigenfunction ¢y.

2. A variational reduction method

In this section, we investigate multiplicity of solutions u(z,t), in Hp,
for a piecewise linear perturbation —(bu™ — au™) of the one-dimensional
wave OpPErator Uy — U, with the nonlinearity —(bu* — au™) crossing the
eigenvalue Ajg. We suppose that —1 < a < 3 and 3 < & < 7. Under this
assumption, we have a concern with a relation between multiplicity of
solutions in Hy and source terms of a nonlinear wave equation

(2.1) Lu+but —au” =f in Hp

Here we suppose that f is generated by two eigenfunctions ¢gp and ¢y.

We shall use the contraction mapping theorem 1o reduce the problem
from an infinite dimensional one in Hp to a finite dimensional one. We
investigate multiplicity of solutions and source terms of equation (2.1).

Let Vp be the two dimensional subspace of Hy spanned by {doo, o}
and W be the orthogonal complement of V; in Hy. Let Fy be an orthog-
onal projection Hy onto V. Then every element u € Hy is expressed
by u = v + w, where v = Pyu, w = (I — Fy)u. Hence equation (2.1) is
equivalent to a system

(22) L+ (I = B)(b(v +w)" — alv+w)") =0,
(2.3) Lu+ P(b{v +w)" — alv+w)™) = s1d00 + 52p.
LeMMA 2.1. For fixed v € Vy, (2.2) has a unique solution w = we{v).

Furthermore, wy(v) is Lipschitz continuous (with respect to L? norm) in
terms of v.
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The proof of the lemma is similar to that of Lemma 1.1 of [3]. From
now, for simplicity, we denote w(v) = wp(v).

By Lemma 2.1, the study of multiplicity of solutions of (2.1} is reduced
to the study of multiplicity of solutions of an equivalent problem

(2.4) Lv + Py(b{v + w(v)}" - a(v + w(v))") = s1900 + 52

defined on the two dimensional subspace Vj; spanned by {¢qo, ¢4}
Ifv>0o0rv <0, then w(v) = 0. For example, let us take v > 0 and
w(v) = 0. Then equation (2.2) reduces to

LO+{I — Pp}{bvt —av™) =0

which is satisfied because vt = v, v~ = 0and (I - Fy)v = 0, since v € V;.
Since the subspace V is spanned by {¢oo, o} and ¢go(z,t) > 0 in Q,
there exists a cone C defined by

Cy={v=cidgo + 20 | &1 > 0, Ki(0)c1 < ¢3 < K5(8)c1}

for some K () < 0, Ky(f) > 0 so that v > 0 for all v € C; and a cone
C’5 defined by

Cy={v=cigo + c2¢s | &1 <0, Kz(0)c1 £ &2 < Ki(8)en}

so that v < 0 for all v € ;.
We define a map @, : V3 — Vj given by

(2.5) By(v) = Lu + FPp(b(v + w(v)* —alv+w(v))™), veV,.

Then &4 is continuous on Vj, since w(v) is continuous on V3 and hence
we have the following lemma (cf. Lemma 2.2 of [3]).

LEMMA 2.2. $y(cv) = ¢®p(v) for c > 0 and v € V.

Lemma 2.2 implies that ®; maps a cone with vertex 0 onto a cone
with vertex 0. We define the cones Cy, C, as follows

1 1
C {v bt eodo |z 20 e sas Kz(ﬂ)@}

1 1
Cy=<v=c +¢ <0 ——xn<e¢ g—c}
4 { 1000 + C2dp | Co A A
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Then the union of C;{1 < i < 4) is V;. We investigate the images of the
cones Ci(1 < ¢ < 4) under ®,. First we consider the image of the cone
Cl. If v = e1¢g0 + caghy > 0, we have
Dp(v) = L)+ Pe(b(v +w(®))" - a{v + w(v))7)
C1aooBoo + CeAiodg + b(c1d00 + o)
= c1(b+ Ago)doo + calb + Aig)dg.
Thus the images of the rays ci¢p + Ki(8)aigp(cr > 0,72 = 1,2) can be
explicitly calculated and they are
c1{b + Ago)doo + Ki(0)er(b+ Aro)odo (c1 > 0).

Therefore &y maps ) onto the cone

b+ Ao b-l—}\lo
_ >
R {d1¢oo+d2¢a |di >0, K1(9)b+/\ + Aoo }

The cone R; is in the right half-plane of Vy and the restriction ®g|¢, :
C, — R, is bijective.

We determine the image of the cone Ca. If v = —¢1¢gy + cagy < 0, we
have

dy <dy < Kg(ﬁ)

Bp(v) = L{v)+ Pa(b(v + 8(v))" —~ alv +8(v))7)
= Lv+ Fy(av)
= —c1(Aop + @)oo + c2(Aro + a)y.

Thus the images of the rays —c¢1¢gp + Ki{6)c1¢p (c; > 0,7 = 1,2) can be
explicitly calculated and they are

~c1(Aoo + a}doo + Ki(0)e1 (Mo + a)e (1 2 0).
Thus ®» maps the cone C; onto the cone

A
Rs={d1¢ou+d2¢e|d1<0 K032

+a
d < dy < K0 A .
1 2 2() +ad1}

The cone Rz is in the left half—plane of Vg and the restriction g, :
C3 — Ry is bijective. We note that R, is in the right half plane of V}
and Rj3 is in the left half plane of it.

THEOREM 2.1. (i) If f belongs to R, then equation (2.1) has a
positive solution and no negative solution. (i) If f belongs to R3, then
equation (2.1} has a negative solution and no positive solution.
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Lemma 2.2 means that the images $,{C>) and &4(C4) are the cones
in the plane Vj. Before we investigate the images ®4(C2) and ®4(Cy), we
set

R, = {dlqbgo + dado | d2 2 0,

1 Ap+ta 1 b+ g
= o <di < = 20
Kz(e) Aip +a Kg(ﬁ) b+ Ao
1 /\()() +a 1 b+ AOO

L= qd d dy 0, 5= <d £ —— dy ¢ .
4 { 1600 + dzdro | dz <0, Dot NS KB b+ M 2
Then the union of four cones R, R}, Rs, R} is also the space Vy.

To investigate a relation between multiplicity of solutions and source
terms in the nonlinear wave equation

(2.1) Lu+but —au” =f in H,,

we consider the restrictions ®y|¢,(1 < ¢ < 4) of & to the cones C;. Let
By = Dy, i-e.,

Py : C; — Vo
For ¢ = 1,3, the image of ®y; is R; and &y, : C; — R; is bijective.

From now on, our goal is to find the image of C; under ®y; fori = 2,4.
Suppose that v is a simple path in C, without meeting the origin, and
end points (initial and terminal) of 7 lic on the boundary ray of C» and
they are on each other boundary ray. Then the image of one end point
of 4 under ®, is on the ray c;(b+ Aw)doo + K2{8)c1(b+ Aio)ge, c1 > 0 (a
boundary ray of R;) and the image of the other end point of v under &,
is on the ray —ei(Ag + @)oo + K1(8)cy(Aio + a)dp, ¢1 > 0 (a boundary
ray of R3). Since ®, is continuous, ®4(7) is a path in V5. By Lemma
1.2, ®4(7) does not meet the origin. Hence the path ®y(7y) meets all rays
(starting from the origin) in By U R} or all rays (starting from the origin)
in R’Q U R3.

Therefore it follows from Lemma 1.2 that the image ®4(C3) of Cy
contains one of sets B, U It} and R; U R3.

Similarly, we have that the image ®4(Cy) of Cy contains one of sets
R} U RIZ and R:i U R3.

LEMMA 2.3. Let A be one of the sets Ry U R and R, U Ry such that
it is contained in $g(Cs). Let v be any simple path in A with end points
on 8C,, where each ray (starting from the origin) in A intersect only one
point of 4. Then the inverse image ®,;} () of +y is a simple path in C,
with end points on @C,, where any ray (starting from the origin) in Cy
intersects only one point of this path.
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Proof. We note that &, () is closed since g is continuous and - is
closed in V. Suppose that there is a ray (starting from the origin) in
C, which intersects two points of ®;;(v), say, p, ap(e > 1). Then by
Lemma 1.2,

Doo(ap} = aPp(p),
which implies that ®g(p) € v and Ppe(ap) € v. This contradicts that
each ray (starting from the origin) in A intersect only one point of .

We regard a point p as a radius vector in the plane V. Then for a
point p in Vp, we define the argument argp of p by the angle from the
positive gg-axis to p.

We claim that @3, (7) meets all ray (starting from the origin) in Ca.
In fact, if not, @5, () is disconnected in C,. Since @) (v} is closed and
meets at most one point of any ray in A, there are two points p; and py
in C» such that @3, () does not contain any point p with

argp; < argyp < argps.

On the other hand, if we let { the segment with end points p; and p, then
®go(l) is a path in A, where Pgo(p1) and Pga(pe) belong to . Choose a
point g in ®p,(1) that arg g is between arg $gy(p;) and arg $po(p;). Then
there exist a point ¢’ such that ¢ = 3q for some 3 > 0. But o, (¢')
meets [ and

argpr < arg 5, (¢') < argpa,
which is a contradiction. This completes the lemma. |

Similarly, we have the following lemma.

LEMMA 2.3'. Let A be one of the sets Ry U R and R} \J Ry such that
it is contained in ®y(Cy). Let v be any simple path in A with end points
on §A, where each ray (starting from the origin) in A intersect only one
point of v. Then the inverse image @541 () of v is a simple path in Cj
with end points on 8Cy, where any ray (starting from the origin) in Cy
intersects only one point of this path.

With Lemma 2.3 and Lemma 2.3/, we have the following theorem,
which is very important to investigate a relation between the multiplicity
of solutions and source terms in a nonlinear wave equation.

THEOREM 2.2. For i = 2,4, if we let $4;(C;) = R;, then R, is one of
sets RiUR), RyUR; and Ry is one of sets RyU Ry, Ry UR;. Furthermore,
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for each 1 < i < 4, the restriction ®y maps C; onto R;. In particular,
&y, and Py are bijective.

3. Multiplicity of solutions and source terms in Hy

In this section we reveal the relation between multiplicity of solu-
tions and source terms in the nonlinear wave equation (2.1). Now we
remember the map @y : V; — Vj given by

Oy(v) = Lv + P(b(v + w(w))" —alv +w(v)) ), vel,

where —1 < ¢ < 3 < b < 7, w(v) is a solution of (2.2), and Vj is the
two-dimensional subspace of Hy spanned by two eigenfunctions ¢g, dg.
The map $y is continuous on Vj, since w(v) is continuous on V4.

For f € Vj, we establish an a priori bound for solutions of

(31)  Lv+PR(b(v+z(@)* —alv+zv))7)=f in V.

LEMMA 3.1. Let C = {(a,b) : o3 + 75 = 1} Let k(= 16) be fixed
and f € Vp with ||f|| = k. Let a,5,e > 0 be given. Let 3+ a < b <
7T—a, —1+ 8 < a < 3— 3 satisfy the condition ﬁ—%—\/—;ﬁ # 1 and
dist{{a,b),C) > ¢. Then there exists Ry > 0 (depending only on k and
a, B, €) such that the solutions v of (3.1) satisfy ||v|| < Re.

Proof. Let —1<a<3<b<7, fe&Vy Let veVybegiven. Then
there exists a unique solution z € W of the equation

Le+(I—-P)blv+2)" —alv+z)"-f1=0 in W

If z = z(v), then it is continuous on V5. In particular z(v) satisfies a
uniform Lipschitz in V3 with respect to the L? norm (cf. [3]).

Suppose the lemma does not hold. Then there is a sequence (b,, a5, vy)
such that b, € [~14+a, T—a]l, a, € [—1+8, 3—7] satisfy dist((a,, bn), C) =
¢ [[all = +o0, and

vy = L7Hf — Po(bp(vn + 2(vn))" — anlvn + 2(v,))7) in Vo

Let 4, = v, +2(v,). Then the sequence (b, @y, u,) with b, € [-1+0a,7—
al, a, € [-14 8,3 — ] satisfies ||u,]| — +oc0 and

ty = L Nf —bpul +a,u”) in H
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Put w, = W:j_:ﬂ Then we have

f
[
The operator L™! is compact. Therefore we may assume that w, — wy,

bn ~— b[] < (—1,7), a, — 4y € (—'1,3) with (G.U,b[]) ¢ C. Since \\wnll =1
for all n, ||wo|| = 1 and wy satisfies

w, = L7 — baw, + anwy).

wy = L7 (—bpwi +awy) in Hy.

This contradicts the fact (Theorem 1.2 of [2]) that for -1 < a,b < 7
with the condition Tblfl' + ﬁ # 1 the equation Lu + but —au™ =0
has only the trivial solution. O

LEMMA 3.2, Let —1 < a <3, -1 < b < 7 satisfy

1 1
ve+1 + va+1 <
Let k(> 6+ 1) be fixed and f € Vp with || f|| = k. Then we have

d{iv— L '(f — P(b{v + z(v))" — a(v + z(v))7)), Br,0) = 1

for all R > Ry.

Proof. Let b = a = 0. Then we have

d(v — L7(f), Br,0) = 1,

since the map is simply a translation of the identity and since | L™} (f)] <
Fy by Lemma 3.1.

Incase ba #0{(-1<a<3,-1<b<T) withﬁ--i—\/—g;—; < 1, the
result follows in the usual way by invariance under homotopy, since all
solutions are in the open ball By, . O

(3.2) 1.

LEmMMA 3.3. Let —1 < a < 3 < b < 7 satisfy the condition (3.2) and
f = (b+ 1)¢o. Then equation (3.1) has a positive solution in Int (4, at
least one sign changing solution in Int Cy, and at least one sign changing
solution in Int Cy.

Proof. First we compute the degree (R > Ry)

d(v — L7Mf — Py(b(v + 2(v))" — a(v + z(v)) ")), Bk 1 C1,0)
= d(v - L™Nf — bv), Br N Cy,0) = —1,
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since v — L™!(f —bv) = 0 has a unique solution in IntC, and 1+ % > 0,
1+ Aim < 0. Since, for f = (b4 1)¢g, equation (3.1} has no negative
solution in IntCs,

d(v — L7Yf — Py(b{v + 2(v))* — a(v + 2(v))7)), Br N 3,0} =0.
By the domain decomposition lemma,
d(v — L7(f = Po{(b(v + z(v))* — alv + 2(v))7)), BR N (G U C4),0) = 2.

Hence equation (3.1) has at least one sign changing solution in Int (CoU
Cy).

Suppose that (3.1) has a solution in Int Cy. Then ®p(Cz) N Ry # ¢
and henece Ry = $y(Ca) = Ry U R} by Theorem 2.2. Let B : Vg — Vj be
a linear map, where the matrix B is given by

btat2ipg b—a
2 V2
b—a bat2hpo |-

2/2 2

Then B(Cy) = Ry = ®4(C3) and Bv = ®y(v) for all v € 9C;. Now we
may assume that the solution of Bv = f is in Bp,. Hence fo<g<t<1
and R > Ry, then we have

tBu+ (1 —t)®p(v}y £ f, ve€d(BpnNCy).

So we have

d{v — L7Y(f — Py(b(v + z(v))* — a(v + 2(v)) 7)), Ba N 3, 0)

=d(v— L' (f — Bv+ Lv), BRN G, 0) = 1,
since Bv = f has a unique solution in Int C; and det(L~'B) > 0.
Since d(v — L™Y(f — Py(b(v + z(v))" — a{v + 2(v))7)), Br,0) = 1 and
div — L7Y(f -~ Bolb{v + z(v))* — a{v + 2(v))7)), Be N C3,0) = 0,

d(v — L7 (f — Bo(b(v + 2(v))” —a{v + 2(v))7)), Ba N C4,0) = L.

Therefore (3.1) has at least one solution in Int Cj.

Similarly, if we assume that (3.1) has a solution in Int Cy, then d(v —
LY f — Py(b(v + z(v))T — a(v + 2(v})7)), Ba N Cy,0) = 1 and hence we
get

d(v — LNf = Po(b(v + 2(v))* — a{v + 2(v)) 7)), BN C3,0) = 1.
Therefore (3.1) has at least one solution in Int Cs. O

With Theorem 2.2 and Lemma 3.3, we get the following.
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LEMMA 3.4. Let —1 < a < 3 < b < 7 satisfy the condition (3.2). For
1 <i<4,let ®(C;) = R;. Then Ry = RyUR) and Ry = Ry URY), where
5, Ry are the same cones as in section 2.

Proof. It follows from Lemma 3.3 that R2M Ry # ¢. Since R, is one of
sets Ry U R, R3 U R (Theorem 2.2), the image R of C3 under ¢ must,
be Rl U R-fi

On the other hand, it follows from Lemma 2.6 that RyNR; # ¢. Since
R, is one of sets R; U R}, R3 U R} (Theorem 2.2), the image R4 of Cy
under ¢ must be R, U Rj. O

If a solution of (2.4} is in €}, then it is positive. If a solution of (2.4)
is in C3, then it is negative. If a solution of (2.4) is in Int {C;UCy), then
it has both signs. Therefore we have the main theorem of this paper
with aid of Theorem 2.1, Theorem 2.2, and Lemma 3.4.

THEOREM 3.1. Let —1 < a < 3 < b < 7 satisfies the condition {3.2).
Then we have the followings.
(i) If f € Int R;, then equation (2.1} has a positive solution and at least
two sign changing solutions in Hy.
(i) If f € OR,, then equation (2.1) has a positive solution and at least
one sign changing solution in Hy.
(i) If f € Int R{(i = 2,4), then equation (2.1) has at least one sign
changing solution in Hy.
(iv) If f € Int Rjy, then equation (2.1} has only the negative solution.
(v) If f € ORs, then equation (2.1) has a negative solution. O

4. A note on the existence of infinitely many solutions in #H

We suppose that —1 < @ < 3 and 3 < b < 7. Under this codition, we
investigate the existence of solutions in / of a nonlinear wave equation

{4.1) Lut+bu* ~auw =f in H

in the weak sence; u is a solutions of (4.1) iff (Lu+bu™ —au=,h) = (f, h)
holds for all A € H. Here we suppose that f is generated by three
eigenfunctions ¢, ¢o, ¥10. We reveal a relation between multiplicity of
solutions in H and source terms of equation.

Let V be the subspace of H spanned by three eigenfunctions g, @10,
1. Let f € V. Then f € V), for some 8 with -1 < 8 < 1 and hence f
belongs to some cone R; in Vp (defined in section 3).
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LEMMA 4.1. Let f € Vy. If ug is a solution in Hy of (2.1}, then it
becomes a weak solution in H of (4.1).

Proof. If h € H, then it is expressed by h = hy + h;, where hg € Hy,
ki € Hi. Here Hy is an orthogonal compliment of Hy in H. Since
Lug + bu — auy — f € Hg, for all h € H we have

(Lug + buy — avy — f, k)

= (Lug + buy — auy — f, hg + hy)

= (Lug + buf — auy — f,he) + (Lug + bug — aug ~ f, hy)

— 0_ D

Let P be an orthogonal projection H onto V. Then every element
u € H is expressed by u = v + w, where v = Pu, w = ({ — P)u. Hence
equation (4.1) is equivalent to a system

(4.2) Lw+ (I —P)blv+w) —alv+w)")=0,

(4.3) Lv+Phv+w)t —a(lv+w)") = f.

For fixed v € V, (4.2) has a unique solution w = w(v) (cf. Lemma
2.1). We note that if v € Vp then Lw + (I — P)(b(v + w)" — a(v +
w) )=Lw+ (I — Pp}{b(v+w)* —a(v+w)™) = 0 and hence w(v) = wy(v)
for v € V3. Furthermore, w{v) is Lipschitz continuous (with respect to
L? norm) in terms of v. Hence the multiplicity of solutions of (4.1) is
equal to that of (4.3). We investigate the multiplicity of solutions of

(4.4) Lv+ Py + w(v))* —alv+w())") = f.

Since ¢go > 0 in @, there is a cone I'y C V such that u > 0 for
all v € Ty and a cone I's C V such that u < 0 for all u € I's. Let
I'; = V\(I'; UT'3). Then every element u € 'y has both sign.

We define a map ® : V' — V given by ®(v) = Lv + P(b(v + w(v))* —
a(v+ w(v)) ). Then @(v) = ®4(v) for v € V;. Let £; = &{I')), g =
O(I3), Lo, =V\(E,UZs). Thenforany 8 (-1 < < 1) £, NV = Ay,
TyNVy = Rs, LNV = Int(CoUC,) in V. Hence we have the following
theorem.

THEOREM 4.1. Let —1 < a < 3 < b < 7 satisfy condition (3.2). Then
we have:
(i) If f € IntE;, then equation (4.1) has a postive solution and at least
two sign changing solutions in H.
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(i) If f € d%,, then equation (4.1) has a postive solution and at least
one sign changing solution in H.

(iii) If f € Xy, then equation (4.1) has at least one sign changing solution
in H.

(iv) If f € IntEy, then equation (4.1) has only the negative solution in
H.

(v) If f € O, then equation (4.1) has a negative solution in H.

In particular, for the case f = s¢p(s > 0) we have

THEOREM 4.2. Let ~1 < a < 3 < b < 7 satisfy condition (3.2). For
f = sdoo(s > 0) equation (4.1) has infinitely many solutions in H.

Proof. Let s > 0. For any 6(—1 < 8 < 1) and f = s¢o(s > 0)
(4.5) Lu+ P(bu' —au™) = s¢gs in Hp

has a positive solution and at least two sign changing solutions in Hy. By
Lemma 3.4, there are solutions ugg, tag of (4.5) such that FPy(us) € Cy
and Pg('&.;;g) € Cy If 6 # 92(—1 < 6,0, < 1), then Uag, -‘,é Ung, and
Ugp, F Usp,. This proves the theorem. a

_ REMARK. It follows from Theorem 4.2 that the reduced functional
F(v, ) (s > 0) in 2, Lemma 2.2 (ii)] has infinitely many critical points.
Their critical values except for (0, 5) are equal.
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