• Title/Summary/Keyword: multiple model filters

Search Result 51, Processing Time 0.031 seconds

Design of Interdigitated Multiple Coupled Microstrip Filter/DC Blocks for Microwave Integrated Circuits (초고주파 집적회로를 위한 깍지낀 복수 결합 마이크로스트립 광대역 필터/DC 블록의 설계)

  • Chin, Youn-Kang
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.747-752
    • /
    • 1987
  • Analysis and design procedures for both symmetrical and non-symmetrical open-circuited interdigital multiple coupled microstrip line structures for applications as wide-band DC blocks/filters have been presented. The design equations, as is the case of other microstrip structures, are based on a simplified TEM model. The experimental results are in good agreement with the theoretically predicted ones.

  • PDF

Multiple Behavior s Learning and Prediction in Unknown Environment

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1820-1831
    • /
    • 2010
  • When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.

Efficient Mixture IMM Algorithm for Speech Enhancement under Nonstationary Additive Colored Noise (시변가산유색잡음하의 음성 향상을 위한 효율적인 Mixture IMM 알고리즘)

  • 이기용;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.42-47
    • /
    • 1999
  • In this paper, a mixture interacting multiple model (MIMM) algorithm is proposed to enhance speech contaminated by additive nonstationary noise. In this approach, a mixture hidden filter model (HFM) is used to model the clean speech and the noise process is modeled by a single hidden filter. The MIMM algorithm, however. needs large computation time because it is a recursive method based on multiple Kalman filters with mixture HFM. Thereby, a computationally efficient implementation of the algorithm is developed by exploiting the structure of the Kalman filtering equation. The simulation results show that the proposed method offers performance gain compared to the previous results in [4,5] with slightly increased complexity.

  • PDF

IMM-based INS/EM-Log Integrated Underwater Navigation with Sea Current Estimation Function

  • Cho, Seong Yun;Ju, Hojin;Cha, Jaehyuck;Park, Chan Gook;Yoo, Kijeong;Park, Chanju
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.165-173
    • /
    • 2018
  • Underwater vehicles use Inertial Navigation System (INS) with high-performance Inertial Measurement Unit (IMU) for high precision navigation. However, when underwater navigation is performed for a long time, the INS error gradually diverges, therefore, an integrated navigation method using auxiliary sensors is used to solve this problem. In terms of underwater vehicles, the vertical axis error is primarily compensated through Vertical Channel Damping (VCD) using a depth gauge, and an integrated navigation filter can be designed to perform horizontal axis error and sensor error correction using a speedometer such as Electromagnetic-Log (EM-Log). However, since EM-Log outputs the forward direction relative speed of the vehicle with respect to the sea and sea current, INS correction filter using this may cause a rather large error. Although it is possible to design proper filters if the exact model of the sea current is known, it is impossible to know the accurate model in reality. Therefore, this study proposes an INS/EM-Log integrated navigation filter with the function to estimate sea current using an Interacting Multiple Model (IMM) filters, and the performance of this filter is analyzed through a simulation performed in various environments.

A Study on the Design of Correction Filter for High-Speed Guided Missile Firing from Warship after Transfer Alignment (전달정렬 함상 발사 고속 유도무기의 보정필터 설계에 대한 연구)

  • Kim, Cheon-Joong;Lee, In-Seop;Oh, Ju-Hyun;Yu, Hae-Sung;Park, Heung-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.108-121
    • /
    • 2019
  • This paper presents the study results on the design of the correction filter to improve the azimuth error estimation of the high-speed guided missile launched from the warship after the transfer alignment. We theoretically proved that the transfer alignment performance is determined by the accuracy of the marine inertial navigation system and the observability of the attitude error state variable in the transfer alignment filter, and that most of navigation errors in high-speed guided missile are caused by azimuth error. In order to improve the azimuth estimation performance of the correction filter, the multiple adaptive estimation method and the adaptive filters adapting the measurement noise covariance or the process noise covariance are proposed. The azimuth estimation performance of the proposed adaptive filter and the existing Kalman filter are compared and analyzed each other for 8 different transfer alignment accuracy cases. As a result of comparison and analysis, it was confirmed that the adaptive filter adapting the process noise covariance has the best azimuth estimation performance. These results can be applied to the design of correction filters for high-speed guided missile.

Speech Enhancement Using Multiple Kalman Filter (다중칼만필터를 이용한 음성향상)

  • 이기용
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.225-230
    • /
    • 1998
  • In this paper, a Kalman filter approach for enhancing speech signals degraded by statistically independent additive nonstationary noise is developed. The autoregressive hidden markov model is used for modeling the statistical characteristics of both the clean speech signal and the nonstationary noise process. In this case, the speech enhancement comprises a weighted sum of conditional mean estimators for the composite states of the models for the speech and noise, where the weights equal to the posterior probabilities of the composite states, given the noisy speech. The conditional mean estimators use a smoothing spproach based on two Kalmean filters with Markovian switching coefficients, where one of the filters propagates in the forward-time direction with one frame. The proposed method is tested against the noisy speech signals degraded by Gaussian colored noise or nonstationary noise at various input signal-to-noise ratios. An app개ximate improvement of 4.7-5.2 dB is SNR is achieved at input SNR 10 and 15 dB. Also, in a comparison of conventional and the proposed methods, an improvement of the about 0.3 dB in SNR is obtained with our proposed method.

  • PDF

A Study on a Feature-based Multiple Objects Tracking System (특징 기반 다중 물체 추적 시스템에 관한 연구)

  • Lee, Sang-Wook;Seol, Sung-Wook;Nam, Ki-Gon;Kwon, Tae-Ha
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose an adaptive method of tracking multiple moving objects using contour and features in surrounding conditions. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Data association problem is solved by using feature extraction and object recognition model in searching window. We use Kalman filters for real-time tracking. The results of simulation show that the proposed method is good for tracking multiple moving objects in highway image sequences.

  • PDF

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.

Stabilized Multi-Channel Adoptive IIR Filters for Active Mufflers (능동머플러를 위한 안정한 다중채널 적응 IIR 필터)

  • Nam, Hyun-Do;Suh, Sung-Dae;Bang, Kyung-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.99-106
    • /
    • 2006
  • In this paper, implementation of active mufflers using multiple channel adaptive IIR filter is presented. Usually, recursive LMS(RLMS) algorithms for adaptive IIR filters are highly efficient than filtered-X LMS(FXLMS) algorithms, when the order of both algorithms are the same. However, RLMS algorithms usually diverge before the algorithms arenot yet converged. So, the prefilters are presented to improve the stability by pulling the poles of feedback control transfer function in the beginning of active noise control and returning the original poles after the filters converge. The engine noises of diesel engine automobiles and gasoline engine automobiles are analyzed and the mathematical model of an active muffler is derived. Computer simulations and experiments are performed to show the effectiveness of the proposed systems.

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.