• Title/Summary/Keyword: multiple fuzzy systems

Search Result 253, Processing Time 0.021 seconds

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

A Novel Approach towards use of Adaptive Multiple Kernels in Interval Type-2 Possibilistic Fuzzy C-Means (적응적 Multiple Kernels을 이용한 Interval Type-2 Possibilistic Fuzzy C-Means 방법)

  • Joo, Won-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.529-535
    • /
    • 2014
  • In this paper, we propose a hybrid approach towards multiple kernels interval type-2 possibilistic fuzzy C-means(PFCM) based on interval type-2 possibilistic fuzzy c-means(IT2PFCM) and possibilistic fuzzy c-means using multiple kernels( PFCM-MK). In case of noisy data or overlapping cluster prototypes, fuzzy C-means gives poor performance in comparison to possibilistic fuzzy C-means(PFCM). Moreover, to address the uncertainty associated with fuzzifier parameter m, interval type-2 possibilistic fuzzy C-means(PFCM) is used. Most of the practical data available are complex and non-linearly separable. In such cases using Gaussian kernels proves helpful. Therefore, in order to overcome all these issues, we have integrated multiple kernels possibilistic fuzzy C-means(PFCM) into interval type-2 possibilistic fuzzy C-means(IT2PFCM) and propose the idea of multiple kernels based interval type-2 possibilistic fuzzy C-means(IT2PFCM-MK).

A Multiple Threshold Selection Algorithm Based on Maximum Fuzzy Entropy for the Final Inspection of Flip Chip BGA (플립 칩 BGA 최종 검사를 위한 최대퍼지엔트로피 기반의 다중임계값 선정 알고리즘)

  • 김경범
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.202-209
    • /
    • 2004
  • Quality control is essential to the final product in BGA-type PCB fabrication. So, many automatic vision systems have been developed to achieve speedy, low cost and high quality inspection. A multiple threshold selection algorithm is a very important technique for machine vision based inspection. In this paper, an inspected image is modeled by using fuzzy sets and then the parameters of specified membership functions are estimated to be in maximum fuzzy entropy with the probability of the fuzzy sets, using the exhausted search method. Fuzzy c-partitions with the estimated parameters are automatically generated, and then multiple thresholds are selected as the crossover points of the fuzzy sets that form the estimated fuzzy partitions. Several experiments related to flip chip BGA images show that the proposed algorithm outperforms previous ones using both entropy and variance, and also can be successfully applied to AVI systems.

Application of Multiple Fuzzy-Neuro Controllers of an Exoskeletal Robot for Human Elbow Motion Support

  • Kiguchi, Kazuo;Kariya, Shingo;Wantanabe, Keigo;Fukude, Toshio
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • A decrease in the birthrate and aging are progressing in Japan and several countries. In that society, it is important that physically weak persons such as elderly persons are able to take care of themselves. We have been developing exoskeletal robots for human (especially for physically weak persons) motion support. In this study, the controller controls the angular position and impedance of the exoskeltal robot system using multiple fuzzy-neuro controllers based on biological signals that reflect the human subject's intention. Skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been used as input information of the controller. Since the activation level of working muscles tends to vary in accordance with the flexion angle of elbow, multiple fuzzy-neuro controllers are applied in the proposed method. The multiple fuzzy-neuro controllers are moderately switched in accordance with the elbow flexion angle. Because of the adaptation ability of the fuzzy-neuro controllers, the exoskeletal robot is flexible enough to deal with biological signal such as EMG. The experimental results show the effectiveness of the proposed controller.

Output Tracking Controller Design of Discrete-Time TS Fuzzy Systems (이산시간 TS 퍼지 시스템의 추종 제어기 설계)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this paper, an output tracking control technique of discrete-time Takagi-Sugeno (TS) fuzzy systems is developed. The TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the stabilization problem of a uncertain multiple linear system. A sufficient condition for asymptotic tracking is obtained in terms of linear matrix inequalities (LMI). A design example is illustrated to show the effectiveness of the proposed method.

  • PDF

Robust Tracking Control of TS Fuzzy Systems with Parametric Uncertainties (파라미터 불확실성을 포함한 TS퍼지 시스템의 강인 추종 제어)

  • 이호재;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.260-263
    • /
    • 2000
  • In this paper, a tracking control technique of Takagi-Sugeno(TS) fuzzy systems with parametric uncertainties is developed. The uncertain TS fuzzy system is represented as an uncertain multiple linear system. The tracking problem of TS fuzzy system is converted into the regulation problem of a multiple linear system. A sufficient condition for robust tracking is obtained in terms of linear matrix inequalities(LMI). A Design example is illustrated to show the effectiveness of the proposed method.

  • PDF

A Multiple-Valued Fuzzy Approximate Analogical-Reasoning System

  • Turksen, I.B.;Guo, L.Z.;Smith, K.C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1274-1276
    • /
    • 1993
  • We have designed a multiple-valued fuzzy Approximate Analogical-Reseaning system (AARS). The system uses a similarity measure of fuzzy sets and a threshold of similarity ST to determine whether a rule should be fired, with a Modification Function inferred from the Similarity Measure to deduce a consequent. Multiple-valued basic fuzzy blocks are used to construct the system. A description of the system is presented to illustrate the operation of the schema. The results of simulations show that the system can perform about 3.5 x 106 inferences per second. Finally, we compare the system with Yamakawa's chip which is based on the Compositional Rule of Inference (CRI) with Mamdani's implication.

  • PDF

Chaotic Time Series Prediction using Parallel-Structure Fuzzy Systems (병렬구조 퍼지스스템을 이용한 카오스 시계열 데이터 예측)

  • 공성곤
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.113-121
    • /
    • 2000
  • This paper presents a parallel-structure fuzzy system(PSFS) for prediction of time series data. The PSFS consists of a multiple number of fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts the same future data independently based on its past time series data with different embedding dimension and time delay. The component fuzzy systems are characterized by multiple-input singleoutput( MIS0) Sugeno-type fuzzy rules modeled by clustering input-output product space data. The optimal embedding dimension for each component fuzzy system is chosen to have superior prediction performance for a given value of time delay. The PSFS determines the final prediction result by averaging the outputs of all the component fuzzy systems excluding the predicted data with the minimum and the maximum values in order to reduce error accumulation effect.

  • PDF

A QoS-Guaranteed Cell Selection Strategy for Heterogeneous Cellular Systems

  • Guo, Qiang;Xu, Xianghua;Zhu, Jie;Zhang, Haibin
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.77-83
    • /
    • 2006
  • In order to improve the accuracy of cell selection in heterogeneous cellular systems, this paper proposes a fuzzy multiple-objective decision-based cell selection (FMDCS) strategy. Since heterogeneous cellular systems have different access technologies and multiple traffic classes, the strategy adopts cell type, data rate, coverage, transmission delay, and call arrival rate as evaluation indices, and uses different weight vectors according to the traffic classes of the mobile host. Then, a fuzzy multiple-objective decision algorithm is applied to select the optimal cell from all candidates. This paper also gives an instance analysis and simulation. The instance analysis shows FMDCS makes different selections for different traffic classes. Simulation results of the after-handoff quality-of-service (QoS) show the selected cell can provide MH optimal service.

  • PDF

Multiple Linear Goal Programming Using Scenario Approach to Obtain Fuzzy Solution

  • Namatame, Takashi;Yamaguchi, Toshikazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.512-516
    • /
    • 1998
  • Fuzzy mathematical programming (FMP) can be treated an uncertainty condition using fuzzy concept. Further, it can be extended to the multiple objective (or goal) programming problem, naturally. But we feel that FMP have some shortcomings such as the fuzzy number in FMP is the one dimesional possibility set, so it can not be represented the relationship between them, and, in spite of FMP includes some (uncertainty) fuzzy paramenters, many alogrithms are only obtained a crisp solution.In this study, we propose a method of FMS. Our method use the scenario approach (or fuzzy random variables) to represent the relationship between fuzzy numbers, and can obtain the fuzzy solution.

  • PDF