• 제목/요약/키워드: multiple eigenvalue

검색결과 92건 처리시간 0.022초

Complete algorithm to locate desired multiple or clustered eigenpairs

  • Jeon, Chang-Wan;Kim, Hyoung-Joong;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.291-294
    • /
    • 1995
  • In this paper, two algorithms for computing multiple or clustered eigenvalues are proposed. The algorithm can be applied to all kinds of Hermitian matrix unlike the existing algorithm. Characteristics of the proposed algorithms is examined by MATLAB simulations.

  • PDF

MULTIPLE EXISTENCE AND UNIQUENESS OF AN ELLIPTIC EQUATION WITH EXPONENTIAL NONLINEARITY

  • CHOE KWANGSEOK;NAM HEE-SEOK
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권3호
    • /
    • pp.179-191
    • /
    • 2005
  • In this paper we consider a Dirichlet problem in the unit disk. We show that the equation has a unique or multiple solutions according to the range of the parameter. Moreover, we prove that the equation admits a nonradial bifurcation at each branch of radial solutions.

  • PDF

AT LEAST FOUR SOLUTIONS TO THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제17권2호
    • /
    • pp.197-210
    • /
    • 2009
  • We prove the existence of multiple solutions (${\xi},{\eta}$) for perturbations of the elliptic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}A{\xi}+g_1({\xi}+ 2{\eta})=s{\phi}_1+h\;in\;{\Omega},\\A{\xi}+g_2({\xi}+ 2{\eta})=s{\phi}_1+h\;in\;{\Omega},\end{array}$$ where $lim_{u{\rightarrow}{\infty}}\frac{gj(u)}{u}={\beta}_j$, $lim_{u{\rightarrow}-{\infty}}\frac{gj(u)}{u}={\alpha}_j$ are finite and the nonlinearity $g_1+2g_2$ crosses eigenvalues of A.

  • PDF

다수의 탄성지지대 위를 축방향으로 이동하는 보 구조물의 동특성 해석 (Dynamic Characteristics of the Beam Axially Moving over Multiple Elastic Supports)

  • 김태형;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.125-130
    • /
    • 2002
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.

  • PDF

Free vibration analysis of a non-uniform beam with multiple point masses

  • Wu, Jong-Shyong;Hsieh, Mang
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.449-467
    • /
    • 2000
  • The natural frequencies and the corresponding mode shapes of a non-uniform beam carrying multiple point masses are determined by using the analytical-and-numerical-combined method. To confirm the reliability of the last approach, all the presented results are compared with those obtained from the existing literature or the conventional finite element method and close agreement is achieved. For a "uniform" beam, the natural frequencies and mode shapes of the "clamped-hinged" beam are exactly equal to those of the "hinged-clamped" beam so that one eigenvalue equation is available for two boundary conditions, but this is not true for a "non-uniform" beam. To improve this drawback, a simple transformation function ${\varphi}({\xi})=(e+{\xi}{\alpha})^2$ is presented. Where ${\xi}=x/L$ is the ratio of the axial coordinate x to the beam length L, ${\alpha}$ is a taper constant for the non-uniform beam, e=1.0 for "positive" taper and e=1.0+$|{\alpha}|$ for "negative" taper (where $|{\alpha}|$ is the absolute value of ${\alpha}$). Based on the last function, the eigenvalue equation for a non-uniform beam with "positive" taper (with increasingly varying stiffness) is also available for that with "negative" taper (with decreasingly varying stiffness) so that half of the effort may be saved. For the purpose of comparison, the eigenvalue equations for a positively-tapered beam with five types of boundary conditions are derived. Besides, a general expression for the "normal" mode shapes of the non-uniform beam is also presented.

중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 민감도 (Natural Frequency and Mode Shape Sensitivities of Damped Systems with Multiple Natural Frequencies)

  • 최강민;이종헌;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.515-522
    • /
    • 2001
  • A simplified method is presented for the computation of eigenvalue and eigenvector derivatives associated with repeated eigenvalues. In the proposed method, adjacent eigenvectors and orthonormal conditions are used to compose an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m is the number of multiplicity of the repeated eigenvalue. One algebraic equation developed can be computed eigenvalue and eigenvector derivatives simultaneously. Since the coefficient matrix of the proposed equation is symmetric and based on N-space, this method is very efficient compared to previous methods. Moreover the numerical stability of the method is guaranteed because the coefficient matrix of the proposed equation is non-singular, This method can be consistently applied to both structural systems with structural design parameters and mechanical systems with lumped design parameters. To verify the effectiveness of the proposed method, the finite element model of the cantilever beam and a 5-DOF mechanical system in the case of a non-proportionally damped system are considered as numerical examples. The design parameter of the cantilever beam is its width, and that of the 5-DOF mechanical system is a spring.

  • PDF

중복근을 갖는 구조물에 대한 개선된 부분공간 반복법 (An Improved Subspace Iteration Method for Structures with Multiple Natural Frequencies)

  • Jung, Hyung-Jo;Park, Sun-Kyu;Lee, In-Won
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.371-383
    • /
    • 1999
  • 본 논문에서는 중복근을 갖는 구조물에 대한 효율적이고 수치적으로 안정한 고유치해석 방법을 제안하였다. 제안방법은 널리 알려진 쉬프트를 갖는 부분공간 반복법을 개선한 방법이다. 쉬프트를 갖는 부분공간 방법의 주된 단점은 특이성 문제 때문에 어떤 고유치에 근접한 쉬프트를 사용할 수 없어서 수렴성이 저하될 가능성이 있다는 점이다. 본 논문에서는 부가조건식을 이용하여 위와 같은 특이성 문제를 수렴성의 저하없이 해결하였다. 이 방법은 쉬프트가 어떤 단일 고유치 또는 중복 고유치와 같은 경우일지라도 항상 비특이성인 성질을 갖고 있다. 이것은 제안방법의 중요한 특성중의 하나이다. 제안방법의 비특이성은 해석적으로 증명되었다. 제안방법의 수렴성은 쉬프트를 갖는 부분공간 반복법의 수렴성과 거의 같고, 두 방법의 연산횟수는 구하고자 하는 고유치의 개수가 많은 경우에 거의 같다. 제안방법의 효율성을 증명하기 위하여, 두개의 수치예제를 고려하였다.

  • PDF

고유진동수와 모우드의 미분을 구하기 위한 대수적 방법 (Algebraic Method for Evaluating Natural Frequency and Mode Shape Sensitivities)

  • 정길호;김동욱;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.225-233
    • /
    • 1995
  • This paper presents an efficient numerical method for computation of eigenpair derivatives for the real symmetric eigenvalue problem with distinct and multiple eigenvalues. The method has very simple algorithm and gives an exact solution. Furthermore, it saves computer storage and CPU time. The algorithm preserves the symmetry and band of the matrices, allowing efficient computer storage and solution techniques. Thus, the algorithm of the proposed method will be inserted easily in the commercial FEM codes. Results of the proposed method for calculating the eigenpair derivatives are compared with those of Rudisill and Chu's method and Nelson's method which is efficient one in the case of distinct natural frequencies. As an example to demonstrate the efficiency of the proposed method in the case of distinct eigenvalues, a cantilever plate is considered. The design parameter of the cantilever plate is its thickness. For the eigenvalue problem with multiple natural frequencies, the adjacent eigenvectors are used in the algebraic equation as side conditions, they lie adjacent to the m (multiplicity of multiple natural frequency) distinct eigenvalues, which appear when design parameter varies. As an example to demonstrate the efficiency of the proposed method in the case of multiple natural frequencies, a cantilever beam is considered. Results of the proposed method fDr calculating the eigenpair derivatives are compared with those of Bailey's method (an amendation of Ojalvo's work) which finds the exact eigenvector derivatives. The design parameter of the cantilever beam is its height. Data is persented showing the amount of CPU time used to compute the first ten eigenpair derivatives by each method. It is important to note that the numerical stability of the proposed method is proved.

  • PDF

부공간축차법의 효율향상을 위한 연구 (A study on the development of an efficient subspace iteration method)

  • 이병채
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1852-1861
    • /
    • 1997
  • An enhanced subspace iteration algorithm has been developed to solve eigenvalue problems reliably and efficiently. Basic subspace iteration algorithm has been improved by eliminating recalculation of converged eigenvectors, using Krylov sequence as initial vectors and incorporating with shifting techniques. The number of iterations and computational time have been considerably reduced when compared with the original one, and reliability for catching copies of the multiple roots has been retained successfully. Further research would be required for mathematical justification of the present method.

PERFORMANCE ENHANCEMENT OF PARALLEL MULTIFRONTAL SOLVER ON BLOCK LANCZOS METHOD

  • Byun, Wan-Il;Kim, Seung-Jo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권1호
    • /
    • pp.13-20
    • /
    • 2009
  • The IPSAP which is a finite element analysis program has been developed for high parallel performance computing. This program consists of various analysis modules - stress, vibration and thermal analysis module, etc. The M orthogonal block Lanczos algorithm with shiftinvert transformation is used for solving eigenvalue problems in the vibration module. And the multifrontal algorithm which is one of the most efficient direct linear equation solvers is applied to factorization and triangular system solving phases in this block Lanczos iteration routine. In this study, the performance enhancement procedures of the IPSAP are composed of the following stages: 1) communication volume minimization of the factorization phase by modifying parallel matrix subroutines. 2) idling time minimization in triangular system solving phase by partial inverse of the frontal matrix and the LCM (least common multiple) concept.

  • PDF