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Abstract

An efficient and numerically stable eigensolution method for structures with multiple natural
frequencies is presented. The proposed method is developed by improving the well-known subspace
iteration method with shift. A major difficulty of the subspace iteration method with shift is that
because of singularity problem, a shift close to an eigenvalue can not be used, resulting in slower
convergence. In this paper, the above singularity problem has been solved by introducing side
conditions without sacrifice of convergence. The proposed method is always nonsingular even if a shift
is on a distinct eigenvalue or multiple ones. This is one of the significant characteristics of the
proposed method. The nonsingularity is proved analytically. The convergence of the proposed method is
at least equal to that of the subspace iteration method with shift, and the operation counts of above
two methods are almost the same when a large number of eigenpairs are required. To show the
effectiveness of the proposed method, two numerical examples are considered.

Keywords @ Subspace iteration method, Inverse iteration. Shift, Multiple natural frequencies, Nonsingularity,
Side condition

© gmreyled EEFoR wAt .ol =%o] By EES 1999 129 31U7A ¥ 3o
A QFBUGE E2F8Y S BUIZEAE 20009 3950 2 ARE ARG,
AR - aRAeY BTN 2

MM AXBES] =28 M12H M35(1999.9) 371



FEIE Re FREO U@ ANY FEIT Y

1. Introduction

Eigensolution method is very important in
dynamic analysis of structures when mode su-
perposition method is used. Many eigensolution
methods have been developed, and among these
methods, the subspace iteration method has
hitherto been known to be very efficient, so
this method has been widely used.

The subspace iteration method was developed
and named by Bathe”?. This method com-
bines simultaneous inverse iteration method
and Rayleigh-Ritz analysis. The following sh-
ortcomings have been identified after exten-
sive use of the method®. These include: (1)
slow convergence and large computational and
storage costs when a relatively large number of
eigenirs required: (2) significantly computat-
ional effort required to form and solve the
subspace eigenproblem when a large number
of eigenpairs are required: and (3) missed
eigenvectors caused by a poor choice of start-
ing trial vectors.

To overcome the above shortcomings, many
researchers have studied a variety of accele-
ration procedures of the subspace iteration
method. The techniques employed include Ch-
ebyshev polynomials”, over-relaxation method >,
shifting technique” . exploitation by partitioning
a large structure into a number of substruc-
tures®’, improving the selection initial vectors”,
selective repeated inverse iteration and multiple

10.11)

inverse iteration and subspace iteration

by omitting some of the Rayleigh-Ritz procedure
from certain iteration steps'2"'?.

Among the above accelerated techniques, a
shifting technique is well-known and effec-
tively used in the commercial FEM programs
such as ADINA'. However, since the sing-
ularity may occur during the use of the shifting

technique in the accelerated scheme such as
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the subspace iteration method with shift, the
shift must be carefully chosen to avoid the
singularity. It is a significant disadvantage of
the subspace iteration method with shift.

Jung, Kim and Lee™ have developed a
method that always guarantees the numerical
stability and maintains the convergence rate
of the subspace iteration method with shift
even if a shift is an exact eigenvalue itself.
However, the method can be only applied to
the structures with distinct natural frequencies.
If a structure with multiple natural frequencies
is analyzed by the method. the singularity
problem may still occur.

In this paper, when the eigenvalue analysis
for a structure with multiple eigenvalues is
performed, an eigensolution technique that
always guarantees the numerical stability is
developed by improving the method of Jung,
Kim and Lee'. That is, the proposed method is
always numerically stable even if a shift is on
a distinct eigenvalue or multiple ones.

The subspace iteration method with shift is
briefly reviewed in next chapter. Chapter three
includes the theory, the proof of the numer-
ical stability, the convergence analysis and
the operation counts of the proposed method.
The effectiveness of the proposed method is
verified by the results of numerical examples
in chapter four. In chapter five, we give con-

cluding remarks.

2. Subspace Iteration Method with Shift

The eigenproblem of the structural dynamics

may be written as follows'®.

KX=MXA (D

where K and M are the stiffness and mass
matrices of the structure of order =z, respec-



tively, the columns of X the eigenvectors,
and A a diagonal matrix with eigenvalues on
its diagonal.

Applying a shift z to eqn (1) gives

(K—uM)X=MX82 (2)
where
L=A—-pul (3)

a I is the unit matrix.

Suppose that the p smallest eigenvalues
A(I=1,2,...,») and corresponding eigenvec-
tors x; are required. For faster convergence,
g trial vectors are normally used with
g= min{2p, p-+8}. Then, the algorithm of the
subspace iteration method with the shift g«
can be described as follows

Step 1. Find the eigenvector approximations
< &+1)

X by the simultaneous inverse iteration
method;
(K—puM) X4 =y x® (4)

where X**" and X are the (nXq) matrices.

Step 2. Compute the projections of the ma-
trices (K—uM ) and M

T{(k-ﬂ) - Xv(kﬂ) (K— uM) 7(“1) (5)
Tl(k+l) - Y(k+l)TM7((k+l) (6)
where E*'™P and WM™ are the (gxq)

symmetric matrices.

Step 3. Solve the eigenproblem of reduced
order q.

—(k — .
K( +1) Q(k+l) — M(k+l)Q(k+x)_Q(k+l) (7)

wher Q**Y and 2%*P are the (gxq) matrices.

Step 4. Find the improved eigenvectors
X(Ie+l):

X kD= 7(0(‘1) Q(k«n (8)

and the improved eigenvalues A%*":

AWM= QU Dy r (9)
A¥Y convertges to A and X“*Y con-
verges to X as 4 approaches infinity. The
convergence rate of the subspace iteration
method with shift is

(=) (Agry— 20 (10)

If a shift is an eigenvalue itself or very
close to it, the iteration procedure becomes
unstable because of the singularity problem
occurred during L D L7 factorization process
of the coefficient matrix. To avoid this singu-
larity problem, that is, to guarantee the sta-
bility of the subspace iteration method with
shift, the following condition was adopted in
the subspace iteration method”:

1.01 A,-, < p<0.99 A, an

where A, ; is the calculated approximation

to (s-1)th eigenvalue and 4, sth eigenvalue.

It means that a shift must be within a
limited region resulting in slow convergence.
Moreover, if the calculated approximation to
an eigenvalue slightly differs from it, an ei-
genvalue may be inside of the limited region.
Then, the singularity may occur although a
shift is inside of the limited region. These
are the significant disadvantages of the sub-
space iteration method with shift. The purpose
of this paper is to remove the limitation in
eqn (11) for choosing the value of a shift .
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3. Proposed Method

3.1 Theory

Consider the simultaneous inverse iteration
step in the subspace iteration method with
shift:

(K—ub) X*Y = yx® (12)

Since if a shift is very close to an eigen-
value in eqn (12) the singularity occurs during

the decomposition process. The (k+1)th eige-

-kt
x¢ D, can not be

nvector approximations,
acquired. This is a significant disadvantage of
the subspace iteration method with shift.

Jung, Kim and Lee' proposed the eigen-
solution method which is always numerically
stable in case of eigenvalue analysis for
structures with distinct eigenvalue. However,
if a shift is very close to multiple eigenvalues.
the singularity still occurs during the decom-
position process of the simultaneous inverse
iteration step.

In this paper, to solve the above singularity
problem that may occur in case of structures
with multiple eigenvalues, the following proce-
dures are proposed. First, let us consider a
shift close to multiple eigenvalues. To simplify
the notation in this discussion, assume that
the multiplicity of the lowest eigenvalue is s,
that is, A, =A4,=--=4,. Then, the inverse
iteration step on the multiple eigenvalues
can be expressed as follows:

(K"‘ #M—X§k+l) =M Xs(k)D:Ek'fl) (13)
where the (nXs) matrices X =[x{®, x®,...,
xs(k)]. T(s (k+1) =[;1(k+l)y;2(k+l)- ';S(kﬂ)]' the

(sxs) matrix D¥V = digg(dd*V, a0, ...,

d¥*P) and the scalar d%'" controls the

374 zIHMAPRITES| =27 H123 M35(1999.9)

length of the vector x **V.

Because there are only (nXs) equations
with ((n+1)Xs) unknowns, (nXs) components
of X%V and s components of Y'Y, in
eqn(13), s side conditions must be introduced
for the solution of eqn (13). These conditions

are that the current vector set (XS(")) is orth-

ogonal to the incremental vector set (4X™®)
wth respect to M . that is,
XPT Max® =9 (14)

Adding the mass orthonormality relation,
X® MX® = I to the side conditions, ean
(14), yields

XOT X *D = (15)
where
XHF0 = xP+ ax® (16)

The inverse iteration step on the other
eigenvalues make use of the existing equation,
eqn (12): that is,

(K- M) X 0 = Mx P, (17
where
Xsk;)s = s(-f-)l xs(i)z,...,xsk)] (18)

Writing eqns (13), (15) and (17) in matrix
form gives

K~ u MX° :Hl: [MX“ (19)
x®m 0 B

where the unknown (sxq) matrix D%V =

[D¥*P,0,...,0] and the (sXq) matrix E=
[£.,0,...,0].

Note that X" from eqn (19) is used in
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eqns (5) and (6) instead of X" in eqn
(4). Egn (19) is the main linear algebraic
equation used in the proposed method.

The coefficient matrix of eqn (19) is of
order (n+s), symmetric. and nonsingular.
The nonsingularity is one of the significant
advantages of the proposed method and will
be shown in the next section.

3.2 Proof of the Nonsingularity of the
Coefficient Matrix'” ™"

The most remarkable characteristic of the
proposed method is that nonsingularity is
always guaranteed. Let the coefficient matrix
of eqn (19) be denoted by C. that is

c= [ {,{(@ﬁ‘j{” M’O(s(k)]. (20)

If C is nonsingular when the shift z be-
comes multiple eigenvalues, that is, g=A;,=--
=JA,, then it will be also nonsingular for a

non-close shift. The resulting C* will be

¢ =[ K=jubt MX,). 21)
XM 0

Nonsingularity of the proposed method is,
therefore, proved by introducing the new eig-
envalue problem of the resulting matrix such
as

C'Y=MYD (22)

where D and Y are the eigenvalue and
the associate eigenvector matrices of the new
eigenvalue problem. respectively. and

M‘=[1(;l?] (23)

Y=[y - y,¢] and D=diagly| vs ... 7n+s)
(24,25)

The eigenpairs of the eigenvalue problem
eaqn (22), y; and 7 for j=1,2,.n+s, are

as follows:

- Eigenvector yi:{zi}, ‘ Xi } {’6"}

i —€
i=1,2,,s:k=s5+1,5+2,,n (26)
1,1 (s)
« Eigenvalue, 7;:{ ~1,-,—1 (s)
Ak_'ls (n'—S)
k=s+1,5+2,,n (27)

where A; and x; are the eigenvalues and

eigenvectors of the system KX = MXA, and
e; is (sX1) vector that all elements are zero

except for ith element with unity.
Considering the determinant of eqn (22),
the relationship can be obtained as follows:

det] C*) = detl M" )def| D]
=(-Ddefia I (—2)  (28)

The determinant of C* is not zero because
of defM}#0 by definition. The nonsingularity
of the coefficient matrix in eqn (19) is
shown. That is, the numerical stability of
the proposed method is proved analytically.
The proposed method, therefore, makes up
for the disadvantage that the subspace iter-
ation method with shift has the limitations:
no limited regions are needed in the pro-
posed method.

3.3 Operation Count and Summary of
Algorithm

Let one operation equal to one multiplication
which is nearly always followed by an ad-
dition. Assume that the half-bandwidths of
K and M are m; and my, respectively. The

HBMAPTDEE =28 H12A M35(1999.9) 375
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steps for the subspace iteration method with
shifting with the operations are summarized
in Table 1, and for the proposed method in
Table 2.

The number of operations of the subspace
iteration method with shifting is Tqn(2m, +4m,,
+2q+4) + n(m? +3m, +2my +2), and that for
the proposed method T ,{qn(2m,+4m, +2¢+4
+8)+sn(my +(s+1)/2)) + n(ms +3my +2my +2).
s is the multiplicity of the multiple eigen-
values which is on or very close to a shift.

The proposed method needs more operations
per each iteration step, gn+n(m,+1), than
the subspace iteration method with shift.
Assume that the ratio is composed of the
operation count per iteration of the proposed
method(N,), that of the subspace iteration
method with shift(N;), and the difference of
the operation count per iteration for above
two methods(N,—N,) as follows:

ratio=—1YL1;»—1yi
_ gn(1+ )+ sn{m, + (s+1)/2}
" qn{(2m, +4my +2q+4+ 5) + sn(m, + (s+ D/2)

(29)

Then, if the half-bandwidth of the stiffness
matrix( m,) is equal to that of the mass matrix

(my), the above ratio can be approximated

as follows:
ratio~6—s (30)
q

This ratio means that the larger the number
of the required eigenpairs, the smaller is the
difference of the operation count between the
proposed method and the subspace iteration
method with shift. That is, the number of ope-
rations for the aforementioned two methods,
the subspace iteration method with shift and
the proposed method, is almost the same when
the number of eigenpairs to be required is large.

Table 1 Operation count for subspace iteration method with shift

Operation Calculation Number of Operations
Multiplication K—puM n(my+1)
Factorization LDT = K—puM wmy(my +3)/2
lIteration

Multiplication Mx® qn(2my +1)

Solve for X**7 (K—ut) XY = Mx(h) qn(2my +1)
Multiplication TEHD = AT yth gn(g+1)/2
Multiplication MU gn(2my +1)
Multiplication ED = DT gty gn(q+1)/2

Solve for Z¥'V & QU*V R pern= D S gD

Multiplication XU 0= gD ey

K¢*) tooamg.mn

nqz

Sturm Sequence Check
Multiplication
Factorization

K—A,M
LDTT = K~A,M

n(my+1)
nmy(my +3)/2

Total

T.qn(2my +4my +2q +4) + n(mk +3my +2my +2)

376 EBRMMPZBEE =24 H123 H35(1999.9)



Table 2 Operation count for the proposed method

Operation Calculation Number of Operations
lteration
k=0
Multiplication K—uM n(my+1)
Multiplication MxX© qn(2my +1)
Change the last s columns of K—uM into MX® neglected

Factorization LDTT=F®
k=12,
Lo 0
Multiplication MX

Change the last s columns of K—uM into MX,“)

> (k+ 1)

Factorization LDTT = F4*0
Solve for X(kﬂ) FU+D X(Hl):R
Multiplication T = X" l),MX(’"
Multiplication Mx*Y
Multiplication MY = M R

& - - —
Solve for Z*¥*V & QWD RHHD SGrn= D S oD

Multiplication X D= FED Skt
Sturm_Seaquence Check

Multiplication K=A,M
Factorization LDT = K-2A,M

{mm(myg =3+2)+(s+11 2

gn(2my+1)

neglected
sn{myg+(s+1)/2)
an(2my +s~1)
an(q+1)/2
an(2my + 1)
qn(q+1)/2

Py

ng-

n(myz+1)
nmy(myg +3)/2

Tlan(2my +4my +2¢ +4+5) + sn(myg + (s+1)/2))

Total

+n{mk +3my +2my +2)

where F®+0 [ K=uM MX}"’] X(bm:[ X

XM 0

4. Numerical Examples

The three-dimensional framed structure and
the simply supported square plate are analyzed
to verify the effectiveness of the proposed
method. With the predetermined error norm
of 10, the structures are analyzed by two
methods: the subspace iteration method with
shift which is not used the limited region(see
eqn (11)) and the proposed method, where

<kt )

8
ﬁ(nn]. R=[ M)E( ](see eqn(19))

the error norm is computed by the following
equation:

=220 PY,
Ile.‘"Ilz

(31)

error norm=

Even if a shift is on or very close to mult-
iple eigenvalues. it is shown that the proposed
method can obtain the solutions without any
singularity. When a shift is not close to

BRAVAIPTBES =EA M1z M35(1999 ¢ 377
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multiple eigenvalues, each convergence rate
for calculating the first ten eigenpairs is com-
pared. All runs are executed in the IRIS4D-
20-S17 with 10 Mips and 0.9 Mflops.

4.1 Three-dimensional Framed Structure

[\)
®
N
3
i
7 g
® 3
1
A =L = 4m=
= . = L-L;'\ 2@ m=8m
3
W)W W/L//' V.
(a) Elevation (b) Plan

1=8.631x10"m*
0=5.154%10°% kg/m"

A4=0.2787m",
E=2.068%10" Pa,

Fig.1 Three-dimensional framed structure

The first example is a three-dimensional
framed structure. The geometric configuration
and the material properties are shown in
Fig.1 The structure discretized using 315
beam elements resulting in system of dynamic
equations with a total of 810 degrees of
freedom. The consistent mass matrix is used
for M.

The lowest ten eigenvalues of the model
are shown in Table 3. The eigenvalues of the
model are distinct root or multiple ones.

Some results are shown in Table 4 and in

Fig.2 to Fig.7 The solution time for two
methods are summarized in Table 4. When a
shift is on 1.01 A;, the subspace iteration
method with shift and the proposed method
obtain the required ten eigenpairs. However,
when the shift is on 1.00001 2A; or on A4,
the subspace iteration method with shift does
not calculate the solutions while the proposed
method finds the solutions. It shows that the
iteration procedure for the proposed method
can converge without any singularity even if
the shift is the same exactly to multiple
eigenvalues, as analytically proved in the
article 3.2.

For each solution method. the convergence
of each eigenpair is depicted in Fig.2 to
Fig.7. Fig.2 to Fig.3 show that when the
shift is on 1.01 A, the convergence of the
proposed method is nearly equal to that of
the subspace iteration method with shift.
Fig.4 to Fig.5 show that when the shift is on
1.00001 A, the proposed method converges

Table 3 The lowest ten eigenvalues of the
three-dim. framed structure

Eigenvalues

0.1556E+03
0.1556E+03
0.3112E+03
0.1623E+04
0.1623E+04
0.2840E+04
0.5736E+04
0.5736E+04
0.8942E+04
0.1202E+05

Mode number

[{ole N Mo RNV ISV I S

—
o

Table 4 Solution time for the lowest ten eigenvalues of the three-dim. framed structure

Analysis methods Shift=1.01 A4 Shift=1,00001 A, Shift= 4,
Subspace iteration method 409.86(1.00) No solution No solution
with shift
Proposed method 421.58(1.03) 421.69 421.19
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Fig. 5 Error norm versus iteration number
of the 10th eigenpair in case of shift

= 1.00001 4,

1.0E+0

1.0€-1

1.0E-2 -

1.0E-3 o

1.0E-4

Error Norm

1.0E-5 4

1.0E-6 -

1.0€-7 -

1.0E-8 T T T T T T T T T T
o 1 2 3 4 35 & 71 8 9 10 n
fteration Number
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well without any singularity while the sub-
space iteration method with shift can not
converge due to the singularity. Fig.6 to Fig.7
show that when the shift is the same exactly
to the second eigenvalue the proposed
method only converges well without any
singularity. This results are the same as a
shift is on 1.00001 A, As the above results.

the proposed method can choose a more exact
shift than the subspace iteration method
with shift, thus the proposed method may be
the more computationally efficient.

4.2 Simply Supported Square Plate

The second example is the simply supported
square plate. Fig.8 shows the geometric
configuration and material properties. The
structure discretized using 36 shell elements
(nine node/element) resulting in system of
dynamic equations with a total of 701 degrees
of freedom. The consistent mass matrix is
used for M.

The lowest ten eigenvalues of the model
are shown in Table 5. The eigenvalues of the
model are distinct root or multiple ones.

Some results are shown in Table 6 and in
Fig.9 to Fig.14. The solution time for two
methods are summarized in Table 6. When a
shift is on 1.01 A,, the subspace iteration
method with shift and the proposed method
obtain the required ten eigenpairs. However,
when the shift is on 1.0001 4, or on A, the

subspace iteration method with shift does not
calculate the solutions while the proposed

method finds the solutions. It shows that the
iteration procedure for the proposed method
can converge without any singularity even if
the shift is the same exactly to multiple
eigenvalues.

For each solution method. the convergence
of each eigenpair is depicted in Fig.9 to
Fig.14. Fig.9 to Fig.10 show that when the

Table 5 The lowest ten eigenvalues of the
simply supported square plate

Eigenvalues

0.4435E+01
0.2914E+02
0.2914E+02
0.7367E+02
0.1305E+03
0.1305E+03
0.2087E+03
0.2087E+03
0.4010E+03
0.4418E+03

Mode number

=

~1 O Ut AW

O

—
o

woo'et

. . @
12.00m

s

E=2.0%10"Pa. p=7.85%10° kg/m®

poisson ratio = 0.3, Shell thickness=0.01lm

Fig. 8 Simply supported square plate

Table 6 Solution time for the lowest ten eigenvalues of the three-dim. framed structure

Analysis methods Shift=1.014,

Shift=1,00001 A, Shift= A,

Subspace iteration method

with shift 720.95(1.00)

No solution No solution

Proposed method 751.05(1.04)

750.64 751.25
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shift = 1.014,
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Fig. 12 Error norm versus iteration number
of the 10th eigenpair in case of shift
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Fig. 14 Error norm versus iteration number
of the 10th eigenpair in case of shift

BRAMARERES =25 M12H HM35(1999.9) 381



oy
e
l
o
W

£ FZEA UE Y FETF w2

shift is on 1.01 A, the convergence of the

proposed method is nearly equal to that of the
subspace iteration method with shift. Fig.11
to Fig.12 show that when the shift is on
1.000014; the proposed method converges

well without any singularity while the subspace
iteration method with shift can not converge
due to the singularity. Fig.13 to Fig.14 show
that show that when the shift is the same
exactly to the second eigenvalue the proposed
method only converges well without any
singularity.

5. Conclusions

A numerically stable technique using side
conditions for improving the subspace iteration
method with shift has been presented. The
characteristics of the proposed method iden-
tified by the analytical and the numerical
results from numerical examples are summa-
rized as follows:

1) The nonsingularity of the proposed me-
thod is always guaranteed, which is proved
analytically: even if the shift is on or very
close to multiple eigenvalues, the proposed
method can obtain the solutions without any
singularity.

2) The convergence rate of the proposed
method is at least equal to that of the sub-
space iteration method with shift, and the
operation counts of the proposed method and
the subspace iteration method with shift are
almost the same when the number of eigen-
pairs to be required is large.
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