• Title/Summary/Keyword: multiple deformation

Search Result 266, Processing Time 0.027 seconds

Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing (연속 회전 등통로각압축 공정의 유한요소해석)

  • Yoon, Seung-Chae;Seo, Min-Hong;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.524-528
    • /
    • 2006
  • Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

The Study on Automated Compensation of Thermal Deformation for High Speed Feed Drive System (고속이송계의 열변형오차 자동보정에 관한 연구)

  • 조성복;박성호;고해주;정윤교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.195-198
    • /
    • 2000
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 60m/min using the high speed ball screw. Also, a lot of problems have happened the feed drive system. It is necessary to study about the characteristics of thermal deformation played a more critical role than static stiffness and dynamic rigidity in controlling the level of machining accuracy. In spite of the improving the thermal deformation characteristics of machine tools at the design stage, there are always some residual errors that have to be compensated for during machining. In this study, thermal deformation error automated compensation device with multiple linear regression is proposed that thermal deformation error can be eliminated at the machining stage. The developed device has been practically applied to the feed drive unit.

  • PDF

The Technical Development of Convergent Multiple Photogrammetry for the Deformation Analysis of Structure (구조물(構造物) 변형해석(變形解析)을 위한 수검다중사진(收劎多重寫眞) 측정(測定)의 기법개발(技法開發))

  • Kang, Joon Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.131-139
    • /
    • 1987
  • In this study, characteristics of multi-photos and optimal photographing method are suggested by analyzing the normal case and convergent case with multiple method. The optimal photographing method is applied to deformation measurement of a model miniature structure under loading. Comparing with conventional measurement method in accuracy, efficiency and proprities of application of this method are suggested. As a result, the optimal photographing condition is ideal at $90^{\circ}$ convergent multiple case, whose measurement values approach to that of precision level within $5{\sim}9{\mu}m$ and bring more than about 55% improvement of accuracy comparing with normal case at the number of photos respectively. Therefore application of this method in deformation measurement as well as precision analysis of structures is desired in precision and economical aspect.

  • PDF

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.

A sensing system for measuring parts deformation and a misalignment in flexible parts assembly (유연성 있는 부품의 조립을 위한 부품변형 및 상대오차 측정장치)

  • 김진영;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.632-635
    • /
    • 1996
  • Flexible parts can be deformed by the contact forces during assembly on the con to rigid parts and thus their successful assembly requires informations about their deformation as well as a misalignment between mating parts. However, because of the nonlinear and complex relationship between parts deformation and assembly reaction forces, it is difficult to acquire all required informations from only the reaction forces during assembly. In this paper, we propose a sensing system consisting of a camera and multiple mirrors for flexible parts assembly. Simulation results show that the system can be effectively used for detecting parts deformation and a misalignment between mating parts.

  • PDF

Deformation of multiple non-Newtonian drops in the entrance region

  • Kim, See-Jo;Kim, Sang-Dae;Youngdon Kwon
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.75-82
    • /
    • 2003
  • In this study, with the finite element method we numerically investigate the deformation of liquid drops surrounded by Newtonian or non-Newtonian viscous medium in the axisymmetric contraction flow. 1, 2 or 4 Newtonian or non-Newtonian drops are considered and the truncated power-law model is applied In order to describe non-Newtonian viscous behavior for both fluids. In this type of flow the drop exhibits considerably large deformation, and thus techniques of unstructured mesh generation and auto-remeshing are employed to accurately express the fluid mechanical behavior. We examine the deformation pattern of liquid drops with viscosity dependence different from that of the surrounding medium and also explain their interactions by comparing relative position or speed of drop front.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

DEFORMATION OF AUGUSTINE VOLCANO, ALASKA, 1992-2006, MEASURED BY ERS AND ENVISAT SAR INTERFEROMETRY

  • Lee, Chang-Wook;Lu, Zhong;Kwoun, Oh-Ig
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.582-585
    • /
    • 2006
  • Augustine volcano is an active stratovolcano located southwest of Anchorage, Alaska. Augustine volcano experienced seven significantly explosive eruptions in 1812, 1883, 1908, 1935, 1963, 1976, and 1986, and a minor eruption in January 2006. To measure ground surface deformation of Augustine volcano, we applied satellite radar interferometry with ERS-1/2 and ENVISAT SAR images acquired from three descending and three ascending satellite tracks. Multiple interferograms are stacked to reduce artifacts due to changes in atmospheric condition and retrieve temporal deformation sequence. For this, we used Least Square (LS) method for reducing atmospheric effects and Singular Value Decomposition (SVD) method for the retrieval of a temporal deformation sequence. Interferograms before 2006 eruption show about 3 cm/year subsidence by contraction of pyroclastic flow deposits from the 1986 eruption. Interferograms during 2006 eruption do not show significant deformation around volcano crater. Interferograms after 2006 eruption show again a several cm subsidence by compaction and contraction of pyroclastic flow deposits for a few months. This study demonstrates that satellite radar interferometry can monitor deformation of Augustine volcano to help understand the magma plumbing system driving surface deformation.

  • PDF

Topographic Phase Correction of MAl (Multiple Aperture SAR Interferometry) Interferogram (MAI (Multiple Aperture SAR Interferometry) 간섭도의 지형위상보정)

  • Jung, Hyung-Sup;Lu, Zhong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.171-180
    • /
    • 2011
  • MAI (multiple aperture SAR interferometry) method has been recently developed to improve the measurement accuracy of along-track surface deformation. By means of split-beam SAR processing, this novel technique produces forward- and backward-looking interferograms, which are combined to generate an MAI interferogram. The along-track surface deformation can then be derived from the MAI interferogram. The achieved accuracy of the along-track surface deformation is approximately 8 cm for interferograms with a coherence of 0.6. It is commonly recognized that the topographic phase on an MAI interferogram can be ignored. However, in this paper, we have generated an MAI interferogram from an ALOS P ALSAR interferometric pair spanning the 2010 Haiti earthquake, and shown that the topographic phase distortion on the MAI interferogram can reach to about $3.45{\times}10^{-4}$ rad./m. This distortion corresponds to an along-track surface deformation of about 98 cm. We have proposed an efficient method to remove the topographic phase distortion. After correcting the distortion, the topographic phase distortion on the MAI interferogram is reduced to about $7.82{\times}10^{-6}$ rad./m. This means that the proposed method can effectively remove the topographic distortion on the MAI interferogram to improve along-track surface deformation measurement.