DOI QR코드

DOI QR Code

Topographic Phase Correction of MAl (Multiple Aperture SAR Interferometry) Interferogram

MAI (Multiple Aperture SAR Interferometry) 간섭도의 지형위상보정

  • Jung, Hyung-Sup (Department of Geoinformatics, The University of Seoul) ;
  • Lu, Zhong (Cascades Volcano Observatory, U.S. Geological Survey (USGS))
  • Received : 2011.04.01
  • Accepted : 2011.04.19
  • Published : 2011.04.30

Abstract

MAI (multiple aperture SAR interferometry) method has been recently developed to improve the measurement accuracy of along-track surface deformation. By means of split-beam SAR processing, this novel technique produces forward- and backward-looking interferograms, which are combined to generate an MAI interferogram. The along-track surface deformation can then be derived from the MAI interferogram. The achieved accuracy of the along-track surface deformation is approximately 8 cm for interferograms with a coherence of 0.6. It is commonly recognized that the topographic phase on an MAI interferogram can be ignored. However, in this paper, we have generated an MAI interferogram from an ALOS P ALSAR interferometric pair spanning the 2010 Haiti earthquake, and shown that the topographic phase distortion on the MAI interferogram can reach to about $3.45{\times}10^{-4}$ rad./m. This distortion corresponds to an along-track surface deformation of about 98 cm. We have proposed an efficient method to remove the topographic phase distortion. After correcting the distortion, the topographic phase distortion on the MAI interferogram is reduced to about $7.82{\times}10^{-6}$ rad./m. This means that the proposed method can effectively remove the topographic distortion on the MAI interferogram to improve along-track surface deformation measurement.

최근 비행방향으로의 지표변위 관측정밀도를 향상시키는 MAI(multiple aperture SAR interferometry)기법이 개발되었다. 이 MAI기법은 split-beam InSAR 처리를 통하여 forward-looking 간섭도와 backward-looking 간섭도를 제작하고, 이 두 개의 다른 두 간섭도로부터 MAI 간섭도를 생성하여 비행방향 지표변위를 관측하는 것으로 비행방향 지표변위를 0.6의 긴밀도(coherence)에서 약 8 cm의 정밀도로 관측을 가능하게 한다. 현재까지 이러한 MAI 간섭도에서 지형위상은 무시 가능한 것으로 알려져 있었다. 그러나 본 연구에서 2010년 아이티에서 발생한 지진 발생 전과 후의 ALOS PALSAR 간섭쌍을 이용하여 MAl 간섭도를 제작하였고, 이 MAI 간섭도에서 지형위상이 $3.45{\times}10^{-4}$ rad./m로 왜곡되고 있는 것을 보였다. 이러한 지형위상왜곡은 약 98 cm의 비행방향 지표변위에 해당된다. 또한 MAI 간섭도의 지형위상왜곡을효과적으로 보정하는 방법을 제안하였으며, 지형위상왜곡을 약 $7.82{\times}10^{-6}$ rad./m까지 저감시켰다. 이는 제안한 방법이 지형위상왜곡을 효과적으로 제거함을 보인다.

Keywords

Acknowledgement

Supported by : 서울시립대학교

References

  1. Amelung, F., S. Jonnson, H. A. Zebker, and P. Segall, 2000. Widespread uplift and 'trapdoor'faulting on Galapagos observed with radar interferometry, Nature, 407: 993- 996. https://doi.org/10.1038/35039604
  2. Amelung, F., D. L. Galloway, J. W. Bell, H. A. Zebker, and R. J. Laczniak, 1999. Sensing the ups and downs of Las Vegas; InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology, 27(6): 483-486. https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
  3. Bechor, N. B. D. and H. A. Zebker, 2006. Measuring two-dimensional movements using a single InSAR pair, Geophysical Research Letter, 33(16): L16311. https://doi.org/10.1029/2006GL026883
  4. Fialko, Y., 2004. Probing the mechanical properties of seismically active crust with space geodesy: Study of the coseismic deformation due to the 1992 Mw 7.3 Landers (southern California) earthquake, Journal of Geophysical Research, 109: doi:10.1029/2003JB002756.
  5. Fialko, Y., D. Sandwell, M. Simons, and P. Rosen, 2005. Three dimensional deformation caused by the Bam, Iran, earthquake and the origin of the shallow slip deficit, Nature, 435: 295- 299. https://doi.org/10.1038/nature03425
  6. Jo, M.-J., J.-S. Won, S.-W. Kim, and H.-S. Jung, 2010. A time-series SAR observation of surface deformation at the southern end of the San Andreas Fault Zone, Geosciences Journal, 14:277-287. https://doi.org/10.1007/s12303-010-0028-y
  7. Joughin, I., S. Tulaczyk, M. Fahnestock, and R. Kwok, 1996. A mini-surge on the Ryder Glacier, Greenland, observed via satellite radar interferometry, Science, 274: 228-230. https://doi.org/10.1126/science.274.5285.228
  8. Jung, H.-C., S.-W. Kim, H.-S. Jung, K.-D. Min, and J.-S. Won, 2007. Satellite observation of coal mining subsidence by persistent scatterer analysis, Engineering Geology, 92: 1-13. https://doi.org/10.1016/j.enggeo.2007.02.007
  9. Jung, H.-S., J.-S. Won, and S.-W. Kim, 2009. An improvement of the performance of multiple aperture SAR interferometry (MAI), IEEE Transactions on Geoscience and Remote Sensing, 47:2859-2869. https://doi.org/10.1109/TGRS.2009.2016554
  10. Jung, H.-S., Z. Lu, J. S. Won, M. P. Poland, and A. Miklius, 2011. Mapping three-dimensional surface deformation by combining multipleaperture interferometry and conventional interferometry: application to the June 2007 eruption of Kilauea volcano, Hawaii, IEEE Geoscience and Remote Sensing Letters, 8:34-38. https://doi.org/10.1109/LGRS.2010.2051793
  11. Kim, S.-W., C.-W. Lee, K.-Y. Song, K.-D. Min, and J.- S. Won, 2005. Application of L-band differential SAR interferometry to subsidence rate estimation in reclaimed coastal land, International Journal of Remote Sensing, 26(7): 1363-1381. https://doi.org/10.1080/01431160512331326620
  12. Lee, C-W., Z. Lu, O-I, Kwoun, and J-S. Won, 2008. Deformation of Augustine volcano, Alaska, 1992-2005, measured by ERS and ENVISAT SAR inteferometry, Earth Planets and Space, 60: 447-452. https://doi.org/10.1186/BF03352811
  13. Lee, C.-W., Z. Lu, H.-S. Jung, J.-S. Won, and D. Dzurisin, 2010. Surface Deformation of Augustine Volcano (Alaska), 1992-2005, From Multiple-Interferogram Processing Using a Refined SBAS InSAR Approach, U.S.. Geological Survey Professional papers, 1769: 453- 465.
  14. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Fiegl, and T. Rabaute, 1993. The displacement field of the Landers earthquke mapped by radar interferometry, Nature, 364: 138-142. https://doi.org/10.1038/364138a0
  15. Massonnet, D., P. Briole, and A. Arnaud, 1995. Deflatation of Mount Etna monitored by spaceborne radar interferometry, Nature, 375: 567-570. https://doi.org/10.1038/375567a0
  16. Tarchi, D., N. Casagli, R. Fanti, D. D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, 2003. Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy, Engineering Geology, 68(1-2): 15-30. https://doi.org/10.1016/S0013-7952(02)00196-5