DOI QR코드

DOI QR Code

Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing

연속 회전 등통로각압축 공정의 유한요소해석

  • Published : 2006.10.01

Abstract

Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

Keywords

References

  1. K. L. Choy, 2000, Vapor Processing of Nano-structured Materials, Handbook of Nanostructured Materials and Nanotechnology, edited by H.S. Nalwa, Academic Press, p. 533
  2. H. Gleiter, 1989, Nanocrystalline materials, Prog. Mater., Vol. 33, pp. 223-315 https://doi.org/10.1016/0079-6425(89)90001-7
  3. O. Kabishev, R. Kabishev, G. Salishchev, 1993, Improvement of diffusion bonding joint by Ar ion bombardment, Mater. Sci. Forum, Vol. 423-425, pp. 113-118 https://doi.org/10.4028/www.scientific.net/MSF.423-425.423
  4. W. Y. Choo, 1998, Fine-grained steel- New challenge to develop ultrafine grain steel with $1{\mu}m$ grain size, J. Kor. Inst. Met. Mater., Vol. 36, pp. 1945-1958
  5. S. C. Yoon, H. S. Kim, 2006, Equal channel angular pressing of metallic powders for nanostructured materials, Mater. Sci. Forum, Vol. 503-504, pp. 221-226
  6. R. Z. Valiev, N.A. Krasilnikov, N.K. Tsenev, 1991, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, Vol. 137, pp. 35-40 https://doi.org/10.1016/0921-5093(91)90316-F
  7. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, 1998, The process of grain refinement in equal channel angular pressing, Acta Mater., Vol. 46, pp. 3317-3331 https://doi.org/10.1016/S1359-6454(97)00494-1
  8. V. M. Segal, 1995, Materials processing by simple shear, Mater. Sci. Eng. A, Vol. 197, pp. 157-164 https://doi.org/10.1016/0921-5093(95)09705-8
  9. Y Saito, H. Utsunomiya, N. Tsuji, T. Sakai, 1999, Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding(ARB) process, Acta Mater., Vol. 47, pp. 579-583 https://doi.org/10.1016/S1359-6454(98)00365-6
  10. M. H. Seo, H. S. Kim, 2001, Finite element analysis of equal channel multi-angular pressing, J. Kor. Inst. Met. Mater., Vol. 39, pp. 360-366
  11. Y Nishida, H. Arima, J. C. Kim, T. Ando, 2001, Rotary-die equal channel angular pressing of an Al-7 mass% Si-0.35 mass% Mg alloy, Scripta Mater., Vol. 45, pp. 261-266 https://doi.org/10.1016/S1359-6462(01)00985-X
  12. Y. Nishida, T. Ando, M. Nagase, S.W. Lim, I. Shigematsu, A. Watazu, 2002, Billet temperature rise during equal channel angular pressing, Scripta Mater., Vol. 46, pp. 211-216 https://doi.org/10.1016/S1359-6462(01)01226-X
  13. A. Ma, K. Suzuki, Y Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu, T. Imura, 2005, Impact toughness of an ultra-fine grained Al-11 mass% Si alloy processed by rotary-die equal channel angular pressing, Acta Mater., Vol. 53, pp. 211-220 https://doi.org/10.1016/j.actamat.2004.09.017
  14. A. Ma, N. Saito, M. Takai, Y. Nishida, H. Iwata, K. Suzuki, I. Shigematsu, A. Watazu, 2005, Effect of severe plastic deformation on tensile properties of a cast Al -11 mass % Si alloy, Mater. Sci. Eng. A, Vol. 395, pp. 70-76 https://doi.org/10.1016/j.msea.2004.12.038
  15. Y Estrin, L.S. Toth, A. Molinari, Y. Brechet, 1998, A dislocation-based model for all hardening stages in large strain deformation, Acta Mater., Vol. 46, pp. 5509-5522 https://doi.org/10.1016/S1359-6454(98)00196-7
  16. SFTC: DEFORM2D
  17. M. Furukawa, Y Iwahashi, Z. Horita, M. Nemoto, T.G Langdon, 1998, The shearing characteristics associated with equal channel angular pressing, Mater. Sci. Eng. A, Vol. 257, pp. 328-332 https://doi.org/10.1016/S0921-5093(98)00750-3
  18. H. S. Kim, S. I. Hong, M. H. Seo, 2001, Effect of strain hardenability and strain rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing, J. Mater. Res., Vol. 16, pp. 856-864 https://doi.org/10.1557/JMR.2001.0113
  19. J. R. Bowen, A. Gholinia, S. M. Roberts, P. B. Prangnell, 2000, Analysis of the billet deformation behavior in equal channel angular extrusion, Mater. Sci. Eng. A, Vol. 287, pp. 87-99 https://doi.org/10.1016/S0921-5093(00)00834-0
  20. H. S. Kim, M. H. Seo, S. I. Hong, 2000, On the corner gap in the equal channel angular pressing, Mater. Sci. Eng. A, Vol. 291, pp. 86-90 https://doi.org/10.1016/S0921-5093(00)00970-9

Cited by

  1. Finite Element Analysis of Half Channel Angular Extrusion (HCAE) as a New Severe Plastic Deformation Process vol.21, pp.3, 2012, https://doi.org/10.5228/KSTP.2012.21.3.164
  2. Characteristics of Plastic Deformation of Commercially Pure Aluminum in Half Channel Angular Extrusion (HCAE) vol.30, pp.1, 2013, https://doi.org/10.7736/KSPE.2013.30.1.120