• Title/Summary/Keyword: multiple clock domains

Search Result 5, Processing Time 0.024 seconds

An On-Chip Test Clock Control Scheme for Circuit Aging Monitoring

  • Yi, Hyunbean
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • In highly reliable and durable systems, failures due to aging might result in catastrophes. Aging monitoring techniques to prevent catastrophes by predicting such a failure are required. Aging can be monitored by performing a delay test at faster clocks than functional clock in field and checking the current delay state from the test clock frequencies at which the delay test is passed or failed. In this paper, we focus on test clock control scheme for a system-on-chip (SoC) with multiple clock domains. We describe limitations of existing at-speed test clock control methods and present an on-chip faster-than-at-speed test clock control scheme for intra/inter-clock domain test. Experimental results show our simulation results and area analysis. With a simple control scheme, with low area overhead, and without any modification of scan architecture, the proposed method enables faster-than-at-speed test of SoCs with multiple clock domains.

Interconnect Delay Fault Test on Boards and SoCs with Multiple Clock Domains

  • Yi, Hyun-Bean;Song, Jae-Hoon;Park, Sung-Ju
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.403-411
    • /
    • 2008
  • This paper introduces an interconnect delay fault test (IDFT) controller on boards and system-on-chips (SoCs) with IEEE 1149.1 and IEEE 1500 wrappers. By capturing the transition signals launched during one system clock, interconnect delay faults operated by different system clocks can be simultaneously tested with our technique. The proposed IDFT technique does not require any modification on boundary scan cells. Instead, a small number of logic gates needs to be plugged around the test access port controller. The IDFT controller is compatible with the IEEE 1149.1 and IEEE 1500 standards. The superiority of our approach is verified by implementation of the controller with benchmark SoCs with IEEE 1500 wrapped cores.

  • PDF

Boundary Scan Test Methodology for Multiple Clock Domains (다중 시스템 클럭 도메인을 고려한 경계 주사 테스트 기법에 관한 연구)

  • Jung, Sung-Won;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1850-1851
    • /
    • 2007
  • To the Boundary Scan, this architecture in Scan testing of design under the control of boundary scan is used in boundary scan design to support the internal scan chain. The internal scan chain has single scan-in port and single scan-out port that multiple scan chain cannot be used. Internal scan design has multiple scan chains, those chains must be stitched to form a scan chain as this paper. We propose an efficient Boundary Scan test structure for multiple clock testing in design.

  • PDF

A Dual Charge Pump PLL-based Clock Generator with Power Down Schemes for Low Power Systems (저 전력 시스템을 위한 파워다운 구조를 가지는 이중 전하 펌프 PLL 기반 클록 발생기)

  • Ha, Jong-Chan;Hwang, Tae-Jin;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.9-16
    • /
    • 2005
  • This paper proposes a programmable PLL (phase locked loop) based clock generator supporting a wide-range-frequency input and output for high performance and low power SoC with multiple clock frequencies domains. The propose system reduces the locking time and obtains a wide range operation frequency by using a dual-charge pumps scheme. For low power operation of a chip, the locking processing circuits of the proposed PLL doesn't be working in the standby mode but the locking data are retained by the DAC. Also, a tracking ADC is designed for the fast relocking operation after stand-by mode exit. The programmable output frequency selection's circuit are designed for supporting a optimized DFS operation according to job tasks. The proposed PLL-based clock system has a relock time range of $0.85{\mu}sec{\sim}1.3{\mu}sec$($24\~26$cycle) with 2.3V power supply, which is fabricated on $0.35{\mu}m$ CMOS Process. At power-down mode, PLL power saves more than $95\%$ of locking mode. Also, the PLL using programmable divider has a wide locking range ($81MHz\~556MHz$) for various clock domains on a multiple IPs system.

Measurement of Setup and Hold Time in a CMOS DFF for a Synchronizer (동기회로 설계를 위한 CMOS DFF의 준비시간과 유지시간 측정)

  • Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.883-890
    • /
    • 2015
  • As the semiconductor processing technology has been developing, multiple cores or NoC(network on chip) can be contained in recent chips. GALS(globally asychronous locally synchronous) clocking scheme that has multi-clock domains with different frequencies or phase differences is widely used to solve power consumption and clock skew in a large chip with a single clock. A synchronizer is needed to avoid a synchronization problem between sender and receiver in GALS. In this paper, the setup and hold time of DFF required to design the synchronizer are measured using 180nm CMOS processing parameters depending on temperature, supply voltage, and the size of inverter in DFF. The simulation results based on the bisection method in HSPICE show that the setup and hold time are proportional to temperature, however they are inversely proportional to supply voltage, and negative values are measured for the hold time.