• 제목/요약/키워드: multiloop system

검색결과 15건 처리시간 0.023초

다변수 공정에서의 외란제거를 위한 다중루프 PI 제어기의 해석적 설계 (Analytical Design of Multiloop PI Controller for Disturbance Rejection in Multivariable Processes)

  • 트롱부;이지태;이문용
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.505-508
    • /
    • 2006
  • This paper presents a new analytical approach for designing multiloop PI controllers for disturbance rejection in multivariable processes with time delay. The proposed method is based on IMC-PID design approach. To overcome a sluggish load response by dominant pole in the process, the IMC filter is modified to compensate the dominant pole effect. Based on the modified IMC filter, an analytical tuning rule for multiloop PI controller is driven by extending the generalized IMC-PID method for single input/single output (SISO) systems [1] to multi input/multi output (MIMO) systems. Simulation results show that the proposed method gives a satisfactory load performance as well as servo performance in the multiloop system.

불확실한 Affine TFM(Transfer Function Matrix) 시스템의 강인한 다중 루프 제어기 설계 (Robust Multiloop Controller Design of Uncertain Affine TFM(Transfer Function Matrix) System)

  • 변황우;양해원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.17-25
    • /
    • 2005
  • This paper provides sufficient conditions for the robustness of Affine linear TFM(Transfer Function Matrix) MIMO (Multi-Input Multi-Output) uncertain systems based on Rosenbrock's DNA (Direct Nyquist Array). The parametric uncertainty is modeled through a Affine TFM MIMO description, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. For this type of parametric robust performance we show robustness of the Affine TFM systems using Nyquist diagram and GB, DNA(Direct Nyquist Array). Multiloop PI/PB controllers can be tuned by using a modified version of the Ziegler-Nickels (ZN) relations. Simulation examples show the performance and efficiency of the proposed multiloop design method.

다중 제어기 및 다중 루우프로 구성된 포화제어시스템의 동적 리셋 와인드엎 방지 방법과 모터제어에의 응용 (Dynamical anti-reset windup method for saturating control systems with multiple controllers and multiloop configuration and its application to motor control systems)

  • 박종구;최종호
    • 제어로봇시스템학회논문지
    • /
    • 제4권2호
    • /
    • pp.141-150
    • /
    • 1998
  • This paper presents a dynamical anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. By regarding the difference of controller states in the absence and presence of saturating actuators as an objective function, the dynamical compensator which minimizes the objective function is derived in an integrated fashion. The proposed dynamical compensator is a closed form of plant and controller parameters. The resulting dynamics of compensated controller reflects the linear closed-loop system. The proposed method guarantees total stability of the resulting system. The effectiveness of the proposed method is illustrated by applying it to a servo motor control system. The paper is an extension of the results in Park and Choi[1].

  • PDF

다중 제어기 및 다중 루우프로 구성된 포화 제어 시스템의 정적 리셋 와인드엎 방지 방법 (Static anti-reset windup method for saturating control systems with multiple controllers and multiloop configuration)

  • 박종구;최종호
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.248-256
    • /
    • 1996
  • This paper presents an anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. The proposed ARW method is motivated by the concept of equilibrium point. The design parameters of the ARW scheme is derive explicitly by minimizing a reasonable performance index. In the event of saturation, the resulting dynamics of the compensated controller reflects the dynamics of the linear closed-loop system. The proposed method guarantees the total stability o fthe resulting control systems under a certain condition. An illustrative example is given to show the effectiveness of the proposed method. The paper is an extension of the results in Park and Choi[10].

  • PDF

불감시간을 갖는 Affine 시스템의 안정도 해석과 제어기 설계 (Controller Design and Stability Analysis of Affine System with Dead-Time)

  • 양해원;변황우
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.93-102
    • /
    • 2005
  • The Nyquist robust stability margin is proposed as a measure of robust stability for systems with Affine TFM(Transfer Function Matrix) parametric uncertainty. The parametric uncertainty is modeled through a Affine TFM MIMO (Multi-Input Multi-Output) description with dead-time, and the unstructured uncertainty through a bounded perturbation of Affine polynomials. Gershgorin's theorem and concepts of diagonal dominance and GB(Gershgorin Bands) are extended to include model uncertainty. Multiloop PI/PID controllers can be tuned by using a modified version of the Ziegler-Nichols (ZN) relations. Consequently, this paper provides sufficient conditions for the robustness of Affine TFM MIMO uncertain systems with dead-time based on Rosenbrock's DNA. Simulation examples show the performance and efficiency of the proposed multiloop design method for Affine uncertain systems with dead-time.

多回路 의 單相自然循環系 에 관한 實驗 및 數値解析的 硏究 (A Numerical and Experimental Investigation of the Single-Phase Natural Circulation System with Multiloop)

  • 장순흥;백원필
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.416-424
    • /
    • 1984
  • 본 연구에서는 다회로의 단상(single-phase) 자연순환계에 관한 실험 및 수치 해석적 연구로서, RWR에서의 자연순환 현상을 모사할 수 있는 fast-running code를 개 발하고 이를 실험을 통하여 입증하며, 또한 자연순환계에서 일어나는 여러 현상을 정 성적으로 관찰하는 것을 목적으로 삼았다. 이론부분은 저자의 다른 논문에 발표되었 으므로 여기에서는 요약하여 소개하며, 실험은 2-회로 PWR(고리 1호기) 1차계통을 약 1/15로 축소시킨 실험장치에서 행하였다.

고급분산 제어 시스템을 위한 일반형 예측 제어 알고리즘의 개발 (Development of GPC algorithm for the advanced cotnrol system)

  • 김성우;박세화;김병국;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.965-969
    • /
    • 1993
  • In this paper, the GPC algorithm is developed for ACS(advanced control system). ACS equals to DCS(distributed control system) with some advanced control algorithm, for example, fuzzy logic controller, autotuning. By its embedded structural control language, which uses simple function codes corresponding to each function blocks, it is possible to construct multiloop controller. The developed GPC function code is divided by RLS (recursive least square) parameter estimator and GPC controller. Simulation result show the availability of GPC function code using the control language.

  • PDF

멀티루프 피드백 방식에 의한 직류 서보 모타의 인센서티브 (insensitive) 위치 제어기의 구성 (DC Servo Motor Insensitive Position System by Multi-loop Feedback Control)

  • 이규찬;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.28-31
    • /
    • 1988
  • This paper proposes a new linear adaptive position controller of DC servo motor. The proposed method can improve the drive performance and rapidly reject the state error caused by both parameter variations and force disturbance. The structure of this adaptive control method is based multiloop feedback control and model reference control. Simulation results are presented to verify the improved response when parameter variations and load disturbance give relatively significant effects to the servo system.

  • PDF

다중 제어루프에 의한 DC-DC 전원장치에 관한 연구 (A Study on DC-DC Power Supply with a Multi-loop Controller)

  • 조주현;정정훈;조정민;김길동;이승환;이훈구;김용주;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1262-1264
    • /
    • 2003
  • The author Present a modified multiloop algorithm including feedforward for controlling a 45kW step down chopper in the power supply of Maglev. The control law for the duty cycle consists of three terms. The first is the feedforward term which compensates for variations in the input voltage. The second term consists of the difference between the slowly moving inductor current and output current. The third term consists of proportional and integral terms involving the perturbation in the output voltage. This perturvation is derived by subtracting the desired output voltage from the actual output voltage. The proportional and integral action stabilizes the system and minimizes output voltage error. To verify the validity of the proposed multiloop controller, simulation study was tried using Matlab/sirnulink.

  • PDF

다이나믹 리셋 와인드엎 방지방법의 확장 (Extension of the dynamic anti-reset windup method)

  • 박종구;최종호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.73-76
    • /
    • 1996
  • This paper presents a dynamical anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. By regarding the difference of the controller states in the absence and presence of saturating actuators as an objective function, the dynamical compensator which minimize the objective function are derived in an integrated fashion. The proposed dynamical compensator is a closed form of the plant and controller parameters. The proposed method guarantees total stability of resulting system. An illustrative example is given to show the effectiveness of the proposed method.

  • PDF