• 제목/요약/키워드: multidrug- resistant gram-negative bacteria

검색결과 25건 처리시간 0.027초

Anti-inflammatory and Anti-bacterial Effects of Aloe vera MAP against Multidrug-resistant Bacteria

  • Choi, Sang Hwa;Shin, Hea Soon
    • Natural Product Sciences
    • /
    • 제23권4호
    • /
    • pp.286-290
    • /
    • 2017
  • Multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are highly dangerous nosocomial pathogens, cause the symptoms of skin infections, pressure sores, sepsis, blood stream and wound infections. Unfortunately, these pathogens are immune to the most common antibiotics, such as, carbapenem, aminoglycoside and fluoroquinolone. Therefore, it is imperative that new and effective antibiotics be developed. In the present study, the antimicrobial effects of Aloe vera MAP (modified Aloe polysaccharide) on Staphylococcus aureus and Bacillus subtilis, Escherichia coli and Enterobacter aerogenes, and clinical Pseudomonas aeruginosa and clinical Acinetobacter baumannii were comprehensibly investigated. Prior to the growth inhibition effect measurement and antibiotic disc diffusion assay on gram-positive and gram-negative bacteria and selected multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, antimicrobial resistance screening was performed for the multidrug-resistant bacteria obtained from clinical isolates. The results for showed the Aloe vera MAP had a concentration-dependent effect on all of examined bacteria, particularly on Pseudomonas aeruginosa. Anti-inflammatory and anti-oxidant experiments were also performed dose dependently effects to confirm the beneficial physiological effects of Aloe vera MAP.

Antimicrobial Potential of Moringa oleifera Seed Coat and Its Bioactive Phytoconstituents

  • Arora, Daljit Singh;Onsare, Jemimah Gesare
    • 한국미생물·생명공학회지
    • /
    • 제42권2호
    • /
    • pp.152-161
    • /
    • 2014
  • The in vitro antimicrobial potential of the unexplored Moringa oleifera seed coat (SC) was evaluated against some Gram-positive and Gram-negative bacteria and yeast pathogens. Antimicrobial studies with various solvent extracts indicated ethyl acetate to be the best extractant, which was used for the rest of the antimicrobial studies as it tested neither toxic nor mutagenic. Gram-positive bacteria including a methicillin resistant Staphylococcus aureus (MRSA) strain were more susceptible with a minimum inhibitory concentration (MIC) range of 0.03-0.04 mg/ml. The antimicrobial pharmacodynamics of the extract exhibited both concentration-dependent and time-dependent killing. Most of the test organisms exhibited a short post antibiotic effect (PAE) except Enterococcus faecalis, Staphylococcus aureus, and Klebsiella pneumoniae 1, which exhibited longer PAEs. Amongst the major phytoconstituents established, flavonoids, diterpenes, triterpenes and cardiac glycosides exhibited inhibitory properties against most of the test organisms. The identified active phytochemicals of the M. oleifera seed coat exhibited antimicrobial potential against a wide range of medically important pathogens including the multidrug-resistant bugs. Hence, the M. oleifera seed coat, which is usually regarded as an agri-residue, could be a source of potential candidates for the development of drugs or drug leads of broad spectrum that includes multidrug-resistant bugs, which are one of the greatest concerns of the $21^{st}$ century.

단일 3차 의료기관에 내원한 당뇨병성 족부병변 환자의 창상 배양검사를 통한 세균 검출 현황 (The Current Status of Bacterial Identification by Wound Culture for Diabetic Foot Lesions in a Single Tertiary Hospital in South Korea)

  • 정성윤;이명진;이승엽;이상윤
    • 대한족부족관절학회지
    • /
    • 제25권2호
    • /
    • pp.100-107
    • /
    • 2021
  • Purpose: The present study aimed to develop guidelines regarding initial choice of antibiotics for diabetic foot ulcers (DFU) by investigating bacterial isolates. Materials and Methods: This study included 223 DFU patients that visited a single tertiary hospital and underwent bacterial culture between January 2016 and February 2020. The study was conducted in two parts: 1) to compare bacterial isolates and wound healing according to comorbidities such as chronic kidney disease (CKD) and peripheral artery disease (PAD), and 2) to compare bacterial isolates according to wound depth using the Wagner classification. Results: Of the 223 patients, 43 had CKD (group A), 56 had PAD (group B), 30 had CKD and PAD (group C), and 94 had none of these comorbidities (group D). The isolation rate for multidrug-resistant gram-negative bacteria (MRGNB) and gram-negative to gram-positive bacteria ratio were highest in group C (p=0.018, p=0.038), and the proportion that achieved wound healing was lowest in group C (p<0.001). In the second part of the study, subjects were classified into 5 grades by wound depth using the Wagner classification; 13 grade I, 62 grade II, 60 grade III, 70 grade IV, and 17 grade V. No significant difference was observed between these grades in terms of isolation rates or gram-negative to gram-positive bacteria ratios. Conclusion: This study suggests antibiotics that cover gram-negative bacteria including MRGNB produces better results in the presence of CKD and PAD and that initial antibiotic choice should be based on the presence of CKD and PAD rather than wound depth.

하천에서의 Oxytetracycline 내성주에 관한 연구 (Study on Oxytetracycline Resistant Bacteria in the Surface Water Environment)

  • 김영진;김종오
    • 한국환경보건학회지
    • /
    • 제41권1호
    • /
    • pp.40-48
    • /
    • 2015
  • Objectives: This study aims to understand the concentration, diversity, and antibiotic characteristics of oxytetracycline resistant bacteria present in a surface water environment. Methods: Water sampling was performed in Cheongmi Stream in Gyeonggi-do, Korea in February and August 2014. Water samples collected from two sites were plated in triplicate on tryptic soy agar plates with 30 mg/L of oxytetracycline. Oxytetracycline resistant bacteria were selected from surface water in Cheongmi Stream and were subjected to 16S rDNA analysis for oxytetracycline resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Results from this study indicate that the dominant resistant organisms in this aquatic environment are from family Acinetobacter and family Aeromonas. As to culturable heterotrophic bacteria, Oxytetracycline resistant bacteria were present 0.45-0.93% during winter and 0.08-0.38% during summer. Most oxytetracycline resistant bacteria exhibited resistance to more than ten of the antibiotics studied. The diversity of oxytetracycline resistant bacteria in winter was higher than in summer. Conclusion: Most of these resistant bacteria are Gram negative and are closely related to pathogenic species. These results suggest that increasing multi-antibiotic resistant bacteria in the surface water environment has a close relation to the reckless use of antibiotics in livestock.

Antibacterial and Synergistic Activity of Isocryptomerin Isolated from Selaginella tamariscina

  • Lee, June-Young;Choi, Yun-Jung;Woo, Eun-Rhan;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.204-207
    • /
    • 2009
  • We investigated novel antibacterial and synergistic activities of isocryptomerin isolated from Selaginella tamariscina. Isocryptomerin showed potent antibacterial activity against Gram-positive and Gram-negative bacterial strains including clinical isolates of antibiotic-resistant species such as methicillin-resistant Staphylococcus aureus(MRSA). Additionally, we further investigated the synergistic activity of isocryptomerin with a conventional antibiotic against MRSA. The result indicated that isocryptomerin had considerable synergistic activity in combination with cefotaxime. In summary, the present study suggests that isocryptomerin may have potential as a novel therapeutic agent for treatment of infectious diseases by not only human pathogenic bacteria but also multidrug-resistant bacteria.

Effects of C-Terminal Residues of 12-Mer Peptides on Antibacterial Efficacy and Mechanism

  • Son, Kkabi;Kim, Jieun;Jang, Mihee;Chauhan, Anil Kumar;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1707-1716
    • /
    • 2019
  • The development of new antimicrobial agents is essential for the effective treatment of diseases such as sepsis. We previously developed a new short peptide, Pap12-6, using the 12 N-terminal residues of papiliocin, which showed potent and effective antimicrobial activity against multidrug-resistant Gram-negative bacteria. Here, we investigated the antimicrobial mechanism of Pap12-6 and a newly designed peptide, Pap12-7, in which the 12th Trp residue of Pap12-6 was replaced with Val to develop a potent peptide with high bacterial selectivity and a different antibacterial mechanism. Both peptides showed high antimicrobial activity against Gram-negative bacteria, including multidrug-resistant Gram-negative bacteria. In addition, the two peptides showed similar anti-inflammatory activity against lipopolysaccharide-stimulated RAW 264.7 cells, but Pap12-7 showed very low toxicities against sheep red blood cells and mammalian cells compared to that showed by Pap12-6. A calcein dye leakage assay, membrane depolarization, and confocal microscopy observations revealed that the two peptides with one single amino acid change have different mechanisms of antibacterial action: Pap12-6 directly targets the bacterial cell membrane, whereas Pap12-7 appears to penetrate the bacterial cell membrane and exert its activities in the cell. The therapeutic efficacy of Pap12-7 was further examined in a mouse model of sepsis, which increased the survival rate of septic mice. For the first time, we showed that both peptides showed anti-septic activity by reducing the infiltration of neutrophils and the production of inflammatory factors. Overall, these results indicate Pap12-7 as a novel non-toxic peptide with potent antibacterial and anti-septic activities via penetrating the cell membrane.

Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia

  • Krishnan, Manigandan;Choi, Joonhyeok;Choi, Sungjae;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.25-32
    • /
    • 2021
  • Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the anti-endotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.

Prevalence of Multi-Antibiotic Resistant Bacteria Isolated from Children with Urinary Tract Infection from Baghdad, Iraq

  • Salman, Hamzah Abdulrahman;Alhameedawi, Alaa kamil;Alsallameh, Sarah Mohammed Saeed;Muhamad, Ghofran;Taha, Zahraa
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.147-156
    • /
    • 2022
  • Urinary tract infections (UTIs) are one of the most common infections in different age groups, including children. Bacteria are the main etiological agents of UTIs. The aim of the present study was to isolate, identify, and determine the antibiotic susceptibility of bacteria isolated from children with UTIs from Baghdad, Iraq. Three hundred and two urine samples were collected from children aged 6 months to 12 years. The samples were cultured on blood agar and MacConkey agar. The selected colonies were subjected to biochemical tests and antibiotic susceptibility analysis using the Vitek® 2 Compact automated microbial identification system. In this sample, 299 bacteria were identified, of which, 267 were gram-negative bacteria, and 32 were gram-positive bacteria. Escherichia coli (56%) was the most commonly isolated gram-negative bacteria, followed by Pseudomonas aeruginosa (14%), Enterobacter spp. (10.48%), Klebsiella pneumoniae (9.36%), Proteus spp. (7.8%), Acinetobacter baumannii (1.5%), and Morganella morganii (0.37%). Enterococcus faecalis (62.5%) was the most commonly detected gram-positive bacteria, followed by Staphylococcus aureus (37.5%). E. coli and P. aeruginosa were the most antibiotic-resistant bacteria. Among the tested antibiotics, meropenem showed 100% sensitivity, followed by imipenem (97.4%), amikacin (91.8%), and tobramycin (83.5%). In contrast, the high frequencies of resistance were observed with cefixime (93.2%), cefotaxime (78.7%), and ceftriaxone/cefotaxime (71.2%). In conclusion, carbapenems and aminoglycosides are highly recommended for the empirical treatment of UTIs, while, Quinolones, penicillins, and cephalosporins are not suggested. Frequent antibiotics susceptibility testing are warranted to determine the resistance pattern of UTI bacteria.

모유 유래 유산균 Enterococcus faecalis BMSE-HMP005의 다제내성 균에 대한 항균효과 (Antimicrobial effect of Enterococcus faecalis BMSE-HMP005 isolated from human breast milk against multidrug-resistant bacteria)

  • 이정은;김수빈;유두나;조소연;김애정;국무창
    • 한국식품과학회지
    • /
    • 제54권2호
    • /
    • pp.209-217
    • /
    • 2022
  • 본 연구에서는 모유 유래 유산균 E. faecalis BMSE-HMP005의 다제내성 균주에 대한 항균효과 및 probiotics로써 잠재적인 가능성을 확인하였다. E. faecalis BMSE-HMP005는 다제내성 균주 20주(Enterococcus spp., Staphylococcus spp., Escherichia spp., Pseudomonas spp., Salmonella spp., Klebsiella spp., Enterobacter spp.)에서 모두 MBC가 확인되어 다제내성 균주에 대한 우수한 항균효과를 입증하였다. 또한 RP-HPLC를 이용하여 배양액 내 bacteriocin을 확인하였으며, 이에 대한 분획은 gram 양성 및 gram 음성균주에서 모두 항균력이 나타나, E. faecalis BMSE-HMP005가 생산하는 bacteriocin의 광범위한 항균 스펙트럼을 입증하였다. E. faecalis BMSE-HMP005는 발암 화합물을 유발하는 β-glucuronidase에 대한 활성과 용혈성은 나타나지 않아 안전한 것으로 판단된다. E. faecalis BMSE-HMP005는 vancomycin에 대해서는 내성을 보이나, kanamycin (>0.058), ampicillin (>0.002), erythromycin (>0.002)은 EFSA 기준의 허용범위보다 낮은 MIC가 확인되었다. 또한 인공위액(pH 2.0) 및 인공 담즙산(0.3% bile acid) 조건에서 각각 98.67%, 95.70%의 생존율을 보였다. 이와 같은 결과는 본 연구에서 분리한 모유 유래 유산균 E. faecalis BMSE-HMP005가 다제내성 균주에 대한 우수한 항균활성을 갖는 probiotics로써 잠재적인 가능성을 보여준다. 따라서 건강기능식품의 기준 및 규격에 제시된 바와 같이 Enterococcus spp.는 항생제 내성 및 독성 유전자가 없는 경우에 한하여 probiotics로 사용이 가능한 고시하고 있어 E. faecalis BMSE-HMP005의 안전성에 대한 추가적인 검증이 필요할 것으로 판단된다.

광주지역 공공수역의 미생물 군집 다양성 및 항생제 내성에 관한 연구 (A Study on Microbial Community Diversity and Antibiotic Resistance in Public Waters in Gwangju)

  • 김선정;박지영;김승호;임민화;유지용;한규성;박세일;서광엽;조광운
    • 한국환경보건학회지
    • /
    • 제50권2호
    • /
    • pp.93-101
    • /
    • 2024
  • Background: As pollutants caused by non-point sources flow into rivers, river water quality monitoring for fecal pollution is becoming increasingly important. Objectives: This study was conducted to investigate the distribution of microbial communities in the Yeongsangang River water system and sewage treatment plants in Gwangju and to evaluate their antibiotic resistance. Methods: In the experiment, samples were distributed to five selective media at each point and then cultured for 18 to 24 hours. When bacteria were observed, they were sub-cultured by size and shape and identified using MALDI-TOF MS equipment. When identification was completed, 17 types of antibiotic susceptibility tests were performed using VITEK II equipment, focusing on gram-negative dominant species among the identified strains. Results: During the study period, a total of 266 strains were isolated from 39 samples. Gram-positive bacteria were 37 strains in four genera, or 13.9% of the total, and Gram-negative bacteria were 229 strains in 23 genera, or 86.1% of the total. Antibiotic susceptibility testing of 23 strains, the major dominant species, showed that one strain (4.3%) was resistant to only one antibiotic, and two strains (8.7%) were 100% susceptible to the 17 antibiotics tested. The other 20 strains (87.0%) were multidrug resistant bacteria resistant to two or more antibiotics. There were various types of multidrug resistance. Among them, penicillin and cephalosporin series showed the highest resistance. Conclusions: Based on the results of this study, it was found that the bacterial community structure changed according to regional and environmental factors, and it was judged that continuous research such as genetic analysis of antibiotic-resistant bacteria present in natural rivers is necessary.