• 제목/요약/키워드: multibody dynamic

검색결과 293건 처리시간 0.025초

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

다물체 차량모델을 이용한 실시간 동역학 시뮬레이션 (Real-time Dynamic Simulation Using Multibody Vehicle Model)

  • 최규재;노기한;유영면
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.486-494
    • /
    • 2001
  • This paper presents a real-time multibody vehicle dynamic analysis method using recursive Kanes formulation and suspension composite joints. To shorten the computation time of simulation, relative coordinate system is used and the equations of motion are derived using recursive Kanes formulation. Typical suspension systems of vehicles such as MacPherson strut suspension system is modeled by suspension composite joints. The joints are derived and utilized to reduce the computation time of simulation without any degradation of kinematical accuracy of the suspension systems. Using the develop program, a multibody vehicle dynamic model is formed and simulations are performed. Accuracy of the simulation results is compared to the real vehicle field test results. It is found that the simulation results using the proposed method are very accurate and real-time simulation is achieved on a computer with single PowerPC 604 processor.

3차원 다물체동역학 시뮬레이션 기반 자기부상열차와 3경간 연속교 동적상호작용 해석 (Dynamic Interaction Analysis of Maglev and 3 Span Continuous Guideway Based on 3 D Multibody Dynamic Simulation)

  • 한종부;김기정
    • 한국CDE학회논문집
    • /
    • 제21권4호
    • /
    • pp.409-416
    • /
    • 2016
  • This study aims to investigate dynamic interaction characteristics between Maglev train and 3 span continuous guideway. The integrated model including a 3D full vehicle model based on multibody dynamics, flexible guideway by a modal superposition method, and levitation electromagnets with the feedback controller is proposed. The proposed model was applied to the Incheon Airport Maglev Railway to analyze the dynamic response of the vehicle and guideway from the numerical simulation. Using field test data of air gap and guideway deflections, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. From the results, it is confirmed that Maglev railway system are designed and constructed safely according to the design criteria.

실험적 모드해석을 이용한 다물체계내 유연체의 변형보드 계산 (Computation for Deformation Modes of a Flexible Body in Multibody System using Experimental Modal Analysis)

  • 김효식;김상섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1718-1723
    • /
    • 2003
  • This paper presents a computational method for deformation modes of a flexible body in multibody system from the experimental modal analysis and an efficient method for flexible multibody dynamic analysis by use of the modes. It is difficult to directly use experimental modal parameters in flexible multibody dynamic analysis. The major reasons are that there are many inconsistencies between experimental and analytical modal data and experimental noises are inherent in the experimental data. So two methods, such as, a method for ortho-normalization of experimental modes and the other one for mode expansion, are suggested to gain deformation modes of a flexible body from the experimental modal parameters. Using the virtual work principle, the equation of motion of a flexible body is derived. The effectiveness of the proposed method will be verified in the numerical example of cab vibration of a truck by comparing analysis and test results.

  • PDF

조속기의 동적 평형위치 해석 (Analysis of Dynamic Equilibrium Configuration of Speed Governor)

  • 강주석
    • 한국산학기술학회논문지
    • /
    • 제14권10호
    • /
    • pp.4733-4738
    • /
    • 2013
  • 본 연구에서는 구속조건을 가진 기계계의 동적 평형위치를 다물체 동역학 해석방법을 이용하여 계산하였다. 다물체계에서 얻어지는 시간 구속조건을 가진 구속조건식과 동역학식으로부터 독립좌표계로 이루어진 동적평형식을 유도하였다. 동적 평형식은 구속조건식과 함께 비선형 대수방정식의 형태로서 Newton-Raphson 방법을 이용하여 수치해를 구하였다. 제안된 동적 평형 계산 방법을 조속기에 적용하여 동적 평형위치를 구하였다. 해석결과는 상용 프로그램의 동역학해석을 통한 평형위치의 결과와 비교하여 타당성을 검증하였다. 조속기의 회전 각속도에 대한 평형위치를 계산하고 설계 파라미터에 대한 평형위치의 영향을 분석하였다.

붐의 탄성효과를 고려한 해상크레인의 유연 다물체 동역학 해석 (Analysis of Dynamic Response of a Floating Crane and a Cargo with Elastic Booms Based on Flexible Multibody System Dynamics)

  • 박광필;차주환;이규열
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.47-57
    • /
    • 2010
  • This study analyzes the dynamic response of a floating crane with a cargo considering an elastic boom to evaluate(or for evaluation of) its flexibility effect on their dynamic response. Flexible multibody system dynamics is applied in order to establish a dynamic equation of motion of the multibody system, which consists of flexible and rigid bodies. In addition, a floating reference frame and nodal coordinates are used to model the boom as a flexible body. The study also simulates the coupled surge, pitch, and heave motions of the floating crane carrying the cargo with three degrees of freedom by numerically solving the equation. Finally, the simulation results of the elastic and rigid booms are comparatively analyzed and the effects of the flexible boom are discussed.

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.