• 제목/요약/키워드: multibody dynamic

검색결과 293건 처리시간 0.023초

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.

다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법 (Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment)

  • 장진현;정헌술
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

Optimization of a composite beam for high-speed railroads

  • Poliakov, Vladimir Y.;Saurin, Vasyli V.
    • Steel and Composite Structures
    • /
    • 제37권4호
    • /
    • pp.493-501
    • /
    • 2020
  • The paper describes an optimization method based on the mathematical model of interaction within multibody 'bridge-track-cars" dynamic system. The interaction is connected with considerable dynamic phenomena influenced by high traffic speed (up to 400 km/h) on high-speed railroads. The trend analysis of a structure is necessary to determine the direction and resource of optimizing the system. Thus, scientific methods of decision-making process are necessary. The process requires a great amount of information analysis dealing with behavior and changes of the "bridge-track-cars system" that consists of mechanisms and structures, including transitions. The paper shows the algorithm of multi-criteria optimization that can essentially reduce weight of a bridge superstructure using big data analysis. This reduction is carried out in accordance with the constraints that have to be satisfied in any case. Optimization of real steel-concrete beam is exemplified. It demonstrates possibility of measures that are offered by the algorithm.

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

전개가능 구조물의 시공 과정 해석 (An Analysis of the Construction Process for Deployable Structures)

  • 한상을;이지연
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.176-183
    • /
    • 2004
  • Deployable structures are space frames consisting of straight bars that are linked together into bundle and can be deployed large, load bearing structures. Deployable structures are easy to set up, to assemble, to disassemble, to transport and to keep for the use. Also, reusability and flexibility are another important advantages for environmental matter. Since deployable structures have various advantages, they offer viable alternatives for a wide range of potential applications in the temporary construction industry as well as in the aerospace industry. The purpose of this thesis is to decide on geometrical parameters of the design through the numerical analysis and create a final configuration of deployable structures using the geometrical parameters. The Multibody Dynamic Analysis that is dealt with mechanics and aeronautics is used for the method of analysis.

  • PDF

AutoDyn7 프로그램의 접촉모듈 개발 (Development of Contact Module in AutoDyn7 Program)

  • 임성현;손정현;김광석;유완석
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.152-159
    • /
    • 2001
  • In multibody dynamic analysis including contact and impact, there are two major analysis methods, i.e., piecewise analysis and continuous analysis. Modeling of contact phenomena is mainly classified with a Kelvin-Voigt model or a model of Hertz contact model. In this paper, a contact module fur AutoDyn7 program was developed and implemented. Both the Kelvin-Voigt model and a model of Hertz contact law were developed. The process of this module is composed of contact distinction and the contact force calculation. Two examples were verified and compared to the commercial program DADS.

  • PDF

차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델 (Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7)

  • 손정현;유완석;김두현
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

다물체로 구성된 궤도차량에 대한 동적 해석(II) : 비선형 접촉력 모듈 개발 (Dynamic Analysis of Multibody Tracked Vehicles(II) : Development of the Nonlinear Contact Force Module)

  • 신장호;최진환;이승종
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.24-31
    • /
    • 1998
  • In this study, a procedure is presented for the dynamic analysis of a multibody tracked vehicle system. The planar vehicle model used in this investigation is assumed to consist of two kinematically decoupled subsystems. i.e., the chassis subsystem and track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. The nonlinear contact force modules describing the interaction between track links, and sprocket, idler, rollers and ground will be developed.

  • PDF

A controlled destruction and progressive collapse of 2D reinforced concrete frames

  • El houcine, Mourid;Said, Mamouri;Adnan, Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.111-139
    • /
    • 2018
  • A successful methodology for modelling controlled destruction and progressive collapse of 2D reinforced concrete frames is presented in this paper. The strategy is subdivided into several aspects including the failure mechanism creation, and dynamic motion in failure represented with multibody system (MBS) simulation that are used to jointly capture controlled demolition. First phase employs linear elasto-plastic analysis with isotropic hardening along with softening plastic hinge concept to investigate the complete failure of structure, leading to creation of final failure mechanism that behaves like MBS. Second phase deals with simulation and control of the progressive collapse of the structure up to total demolition, using the nonlinear dynamic analysis, with conserving/decaying energy scheme which is performed on MBS. The contact between structure and ground is also considered in simulation of collapse process. The efficiency of the proposed methodology is proved with several numerical examples including six story reinforced concrete frame structures.

해상크레인과 대형 중량물의 상호 작용을 고려한 탑재 시뮬레이션 (Erection Simulation Considering Interaction between a Floating Crane and a Heavy Cargo)

  • 차주환;이규열
    • 한국CDE학회논문집
    • /
    • 제15권1호
    • /
    • pp.70-83
    • /
    • 2010
  • Recently, floating cranes are mainly used to erect heavy blocks or cargos for constructing ships in many shipyards. It is important to estimate the dynamic motion of the heavy cargo suspended by a floating crane and the tension of the wire ropes between the floating crane and the heavy cargo. In this paper, the coupled dynamic equations of motion are set up for considering the 6 degree-of-freedom floating crane and the 6-degrees-of-freedom heavy cargo based on multibody system dynamics. Depending on the cargo weight, the motion of the floating crane would be changed to nonlinear state. The nonlinear terms in the equation of motion are considered. In addition, the nonlinear hydrostatic force, the linear hydrodynamic force, wire rope force, mooring force and gravity force are considered as the external forces. As the result of this paper, we analyze the engineering effect for erecting the heavy cargo by using the floating crane.