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Abstract—For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying
kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent
coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix,
which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for
decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-
inverse method and the projection matrix. The equations of the motion of a system are replaced with independent
acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining
the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The
simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also
achieved by the projection method near the singular configuration.
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1. INTRODUCTION

Multibody dynamics, which analyzes the motion of a
dynamic system which is consisted of bodies and joints,
is widely used in the industry to reduce cost and time in a
designing process. Researches in multibody dynamics are
focused on several areas, i.e., enhancing the accuracy and
the efficiency of computation or generality of modeling
process for various types of mechanical systems.

To get more accurate results, a more detailed modeling
of the system is needed. In some cases, flexibility of the
components should also be counted for. To enhance the
computational efficiency, however, a simpler modeling
and an efficient numerical algorithm is required in the
solution process. For the general applications of commer-
cial programs, the modeling process should be easy and
applicable to the wide range of the problems.

In deriving the equations of motion for a multibody
system, Cartesian coordinate system and joint coordinate
system can be compared in view of efficiency and gener-
ality. Although the former is easy to derive equations of
motion, it is inefficient because it takes longer simulation
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time due to the larger number of coordinates and con-
straint equations. On the other hand, the latter can formu-
late the equations of motion with a minimum number of
coordinates, however it also has drawbacks in generali-
zation of the constraint equations and deriving the
equations of motion.

In a constrained multibody system, the equations of
motion have a form of DAEs (Differential Algebraic
Equations) that combine differential equations of motion
and algebraic constraint equations. To solve the DAEs, a
solution scheme of ODE cannot be applied directly. To
use a well established numerical integration scheme, like
a predictor-corrector method, it is inevitable to include a
process that guarantees the satisfaction of constraint
equations in dynamic analysis routine. One way is to use
the constraint stabilization method (Baumgarte, 1972),
however it is too difficult to find proper values of
constants that guarantees convergence around singular
configurations. The coordinate partitioning method, which
divides coordinates into independent and dependent
coordinates, is widely used. In this method, the values of
dependent coordinates are iteratively determined to
satisfy the constraint equations.

Typical coordinate partitioning methods are LU de-
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composition (Wehage, 1981), QR decomposition (Kim,
1986), SVD (singular value decomposition, Mani, 1986),
Gram-Schmidt orthogonalization method (Liang. 1987),
and projection matrix (Kim, 1998). Up to this point, only
one of the above decomposition schemes is used, except
a hybrid scheme, where LU and QR decomposition
schemes are used (Kim, 1997). Other solution techniques
are also suggested for the Euler-Lagrange equations (Potra,
1991) and DAEs (Asher, 1992, Petzold, 1992, Bae, 1999).

None of these papers is concerned in a combination of
decomposing schemes. This paper aims to suggest a
hybrid method of combining LU decomposition and
projection method. To verify the efficiency and the accu-
racy of the suggested method, a spatial four bar mecha-
nism is analyzed.

2. DAEs, EQUATIONS OF MOTION OF A
CONSTRAINED SYSTEM

The constraint equations with kinematic and driving
constraints can be written as:

q)(q’t)=[q)l(q:t)’""¢m(q’t)]=0 (1)

where g is vector of generalized coordinates and m is the
number of constraints. The velocity and the acceleration
equation can be obtained by differentiating equation (1)
with respect to time.

D, g=—D, @
D,j=-2D,4~(P,9), 9~ P., 3)

where @, is the Jacobian matrix, which is a differ-
entiation of constraint equation (1) with respect to
generalized coordinate vector g. When the vector g has n
components, the dimension of the Jacobian matrix
becomes nxm.

The Lagrange multiplier form of the equations of
motion can be written as:

M+ =g @)

where M is the mass matrix of the system, A is the
Lagrange multiplier vector, and g is the generalized force
vector. By combining equation (3) and (4), the equations
of motion of a constrained system can be expressed as
follows:

M ) G| 8 (5)
¢, 0] A |—20,4-(D,4q),~D,

This type of equation is called DAEs (differential alge-

braic equation), which are combination of differential
equation of motion and algebraic equations of con-
straints.

3. SOLUTION OF DAE WITH LU
DECOMPOSITION

Decomposing the Jacobian matrix with the lower and

upper triangular matrix, the following matrix can be
constructed if the Jacobian matrix has full rank.

0, = U

Q)

If the generalized coordinates g are partitioned into
independent coordinates v and dependent coordinates u
from LU decomposition of the Jacobian matrix, then
independent coordinates v are related to the matrix R,
which represents the remainder of the rank calculation.
Therefore, Jacobian matrix can be partitioned as:

®,=[D, D] )

where @,=LU and &,=LR. If the values of the
independent coordinates v are known, then the values of
independent coordinates « can be obtained by solving the
constraint equation (1) using Newton-Raphson method.

{q)u ®, Aui=[—®} ®
0 1], AV 01,

w=u'+Au'

where i is the iteration number. Velocity vector ¢ can
also be divided into independent velocity vector v and
dependent velocity vectordot « . Velocity equations can
be rearranged from equation (2) as:

i
0 Iy v

If position and velocity are known, acceleration and
Lagrange multiplier can be obtained from equation (5).
Then, numerical integration is carried out to predict v(¢+
dt) and v (t+dt) using v(r) and v (¢). Substituting the
calculated components into equation (8) and equation (9),
dependent terms u and # at time #+df can be calculated.
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This process proceeds until the end time for the simu-
lation is reached.

4. SOLUTION OF DAE WITH A PROJECTION
MATRIX

Since the Jacobian matrix has more rows than columns,
its inverse matrix cannot be defined. If each column of
the Jacobian matrix is linearly independent, then the
inverse matrix of ®, @, exists. The right hand side of
inverse matrix for Jacobian can be found as the following
equation (Strang. G., 1988).

L=0](®, ®])" (10)

By using above equations, the null space of Jacobian
matrix for a constrained multibody system can be derived
as following (Kim, 1998).

Py =[[-®(®, ®])"'®,] an

Since ®,P,y=0, Py can be used as a null space of the
Jacobian matrix. However, since the dimension of the
null space is equal to the number of degrees of freedom
of the system, only a partial portion of the P, matrix is
enough. Therefore, in this study, the following P, matrix
will be used as the final null space of the Jacobian matrix.

P=P\B (12)

where the matrix B is a nxk matrix, which takes out
independent rows from P, matrix and n and k are the
number of coordinates and the number of degrees of
freedom, respectively (Kim, 1998).

With the derived matrices I and P, velocity vector can
be written as:

=llx, Pyrl ﬁ (13)

Z

where P,,=P, P The vector b is the right hand side term
of equation (2) and 7 is a free vector parallel to the
tangential component of the constraint surface.

For the acceleration equations, equation (13) is differ-
entiated with respect to time and the following equation
is obtained.

G=[1g, Pyrl I}j +§I[IR7 Pyr] |:i:|

Since Jdt[lk, PNT]=—IR(IJq[1R, Pyrl, § is expressed as:

é=[1m Pl |:b} _Ikd)qq (14)

Z

G=[1r, Purl [?:}
<

where a=—® 4-&, .

Multiplying the equation of motion for the entire
system by [Ip, Py]” matrix, a differential equation of
motion can be written as the following.

I | pge=| 1o g—H (15)
Pyy Py gl 1O

Separating the above equation into two terms, the
following two equations are obtained.

PNTT Mg =P;T g (16)
A=Ix(M§ - g) amn

By substituting the acceleration equation (16) into
equation (14), the following equation can be obtained.

M112=P;T(8_M IITea) (18)

where M, =P}, M P;.

Therefore, independent acceleration vector 7 is
expressed as the following equations and its dimension is
equal to the degree of freedom of the system.

i=M) Pir(g —M Ia) (19)

When the velocity and acceleration vectors are
obtained, position and velocity vectors at the next time
step can be obtained by numerical integration. When the
calculated displacement vector from integration does not
satisfy the kinematic constraint equations, correction of
dependent coordinates are carried out with Newton-
Raphson method.

[q"'} Ai= {“D} (20)
P;T i 0 i

qi+1=qi+Aqi, i=0,1,2,3, ...

Also by integrating independent acceleration vector %,
independent velocity vector Z can be obtained for the
next time step and ¢ can be calculated from the equation
(13). And using values of Z, acceleration vector ¢ can be
obtained from equation (14) and Lagrange multiplier
vector A can be calculated from equation (17).

5. COMBINATION OF LU DECOMPOSITION
AND PROJECTION MATRIX

As long as a system is not encountered with a singular
configuration, the LU method is satisfactory since it
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preserves numerical efficiency. However, when a system
reaches near a singular configuration, the condition num-
ber of the mass matrix in the equations of motion in-
creases rapidly. In this case, the LU decomposition method
is used to continuously carry out coordinate partitioning
to find a new suitable independent coordinates. Although
successive coordinate partitioning is performed, this
method sometimes leads to an undesirable solution.

Since the projection method, on the other hand, per-
forms a numerical integration tracing the null space of
constraint surface at each time step, convergence proper-
ty at singular points is much better than the LU method.
Projection method, however, is less efficient because it
requires more computational burden, associated with
inverse operation of the total Jacobian matrix to find the
null space at each time.

Therefore, a hybrid coordinate partitioning method,
which combines both desirable features of the above two
methods, is proposed. The main idea presented in this
paper is to use LU decomposition method as a basic tool
except at singular configurations, and the projection method
is employed to keep high accuracy around the singular
points.

The following thirteen steps briefly outline the
proposed algorithms.

Step 1: Check the initial conditions whether they satisfy
constraint equations.

Step 2: Evaluate the Jacobian matrix and choose indepen-
dent coordinate and independent velocity vectors
using the LU method.

Step 3: Determine the independent coordinate from equa-
tion (7) and iterate to determine the dependent
coordinate with Newton-Raphson method. Check
whether to change independent coordinate in cor-
rector step when integration step size decreases
or sustains more than 5 times with the same
interval. If independent coordinate is changed,
then go back to step 2.

Also check whether to switch coordinate parti-
tioning method based on the followings:

1) frequent changes of independent coordinate
for a short time period

2) distinct variation of total energy of the system
3) sudden decrease in the integration step size
relative to the prior time step

When the partitioning needs to change, switch
the partitioning scheme and go to step 8.

Step 4: Evaluate the dependent velocity vector from the
independent velocity vector with equation (8).

Step 5: Evaluate the acceleration vector and Lagrange
multiplier from equation (5).

Step 6: Using the explicit/implicit PECE (predictor
evaluation and corrector evaluation) algorithms,
calculate v and v.

Step 7: Return to step 3 and proceed this process to the
final simulation time.

Step 8: Evalute I, Py and the order of Jacobian matrix.

Step 9: Determine the independent coordinate z and
evaluate the position vector with Newton-
Raphson method using the equation (20).

@, i [—rb]
P, 0,
q”l:qi-}-Aqi, i=0,1,2,3, ......

Step 10: Evaluate the generalized velocity from equation
(13).

Step 11: Evaluate the independent acceleration 7 from
equation (19). Using Z, calculate ¢ from
equation (14) and evaluate Lagrange multiplier
A from equation (17).

Step 12:If an integration is continuously performed
more than 5 times with the maximum allowable
integration step size, then the system is judged
to be stable. Switch to the LU decomposition,
choose independent coordinates and return to
step 2.

Step 13: Using ¢, Z and explicit/implicit Adams Bash-
forth PECE algorithms like DE program
(Shampine, 1975), perform the integration and
return to step 9 until the final simulation time.

6. NUMERICAL EXAMPLE AND
SIMULATION

A parallel four-bar linkage, shown in Figure 1, which has
10° of initial rotation angle is chosen as an example
because it has a singular configuration at horizontal
position. When this mechanism starts from the initial
configuration under the gravity, it reaches to the first
singular point at 0.18 second and the second singular
point at 1.0 second.

The constraint equations for the 4-bar mechanism can
be written as:

Figure 1. A parallel 4-bar linkage.
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licosqi+1,c08(q1+q:)+15c08(q1+qx+q3) L) _ |0 @1
l,sing,+1,8in(q,+q2)+13sin(q,+q.+q3) 0

The Jaccbian matrix is:

O =

¢

1,c08¢+1,008q,+15€08G 23 1,€08¢G,+15C08¢ 123 [5C08G 123
(22)

{—! | sinq]—lzsinq,2—13sinq,23—lzsinql2—l3sinqI23—l3sinq123]

where ¢,=¢\+q, and ¢3=q,+q,+q;. To simplify the
expression, l,=L=1m, /,=[,=2m. Then,

sin(g,+q,)=0, cos(g,+g,)=1
cos(q,+g,+qs)=—cosq,, sin(q,+g,+q;)=—sing, (23)

Substituting the above equation in the Jacobian matrix
of equation (22), the final result is:

q
2 2—cosq, —CoOsq

¢=[0 sing, sinql} 24)

Using this Jacobian matrix, the inverse matrix and
projection matrix appear as:

D,0= 2sin’g,

2sing, (1—cosq,) (25)
2sing,(1-cosg,) 2cos’q,—4cosg,+8

(@,@;) =

12

2cos’q,

Lsinzq 2cos’q,—4c0sq,+8 —2sing;(1-cosq,) (26)
2sing,(1—cosq,)

From the equation I=®)(d,d])",

—4(sing,—sing,cosq,) 4sin’qg,
2sin’q, 27

—2sing,cosq,+8sing, —2sin’q,

1

Iy=——5—
! 12sin’q,

2sing,cosq,+4sing,

Thus, the projection matrix Py becomes,

1-1 1
Pr1=1—11rq)q=§ -1 1-1 (29)
1-1 1

With the derived matrices, numerical simulations are
carried out to show the effectiveness of the proposed
hybrid algorithm. Figure 2 illustrates vertical acceleration

40.00

Ly
—E— projection
X —K— Hybrid

Vertical acceleration (m/s.2)

-40.00 T T T T T
0.00 1.00 2.00 3.0C
Time (sec)

Figure 2. Vertical acceleration of the coupler.
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Figure 3. Vertical position of the coupler.

of the coupler. As shown in Figure 2, the LU method
shows incorrect result after it reaches to the second
singular configuration at 1.0 second. However, both the
projection method and the hybrid method give correct
answers. As shown in Figure 3, vertical displacements of
the two methods are in a good agreement. Thus, it is
evident that the proposed hybrid coordinate partitioning
method in this paper can easily overcome the singular
configuration without divergence of solution.

Figure 4 illustrates the total energy of the system
during the simulation. Since the system is a conservative
one, the total energy should have equal values. While the
LU method can not preserve the energy of the system, the
other two methods maintain the same level of energy. It
can be said that the choice of independent coordinates in
the LU method is not adequate near the second singular
configuration and the calculated dependent velocities
have a large error.

Table 1 compares the CPU times used for three
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Figure 4. Total energy of the system.
Table 1. Comparison of CPU times.
LU Projection Hybrid
Method method Method
CPU time , 4 15.63 9.65
(seconds)

methods. The simulation is carried out on SGI (Silicon
Graphics Inc.) INDIGO 2 workstation equipped with a
R10000 chip. As shown in table 1, it is considered that
the LU method is desirable if accuracy of solution is
guaranteed. But for this kind of example with singular
points, the hybrid method has advantage of projection
matrix in terms of accuracy around singular points.

7. CONCLUSION

A null space modification method for constrained multi-
body system is suggested and a hybrid coordinate
partitioning scheme is proposed. From the derivation and
numerical results, the following conclusion is obtained.

The LU decomposition method is efficient and
desirable if accuracy of the solution is guaranteed. But for
a simulation containing singular configurations, solutions
near the singular points may diverge with the LU method.
The projection method, on the other hand, can preserve
the accuracy around the singular points, but it takes
longer simulation times. The hybrid method proposed in
this paper combines advantages of two methods, which
preserves accuracy and efficiency. Thus, the proposed
method combining the LU method and the projection
method of null space is useful for the simulation of
systems including singular configurations.
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