• 제목/요약/키워드: multi-wave

검색결과 1,079건 처리시간 0.029초

다방향 불규칙파가 투과성 잠제 주변의 3차원 파동장에 미치는 영향 (Effect of Multi-directional Random Waves on Characteristics of 3-D Wave Field around Permeable Submerged Breakwaters)

  • 허동수;이우동
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.68-78
    • /
    • 2012
  • This study proposes an improved 3-D model that includes a new non-reflected wave generation system for oblique incident and multi-directional random waves, which enables us to estimate the effect of the various wave-types on 3-D wave fields in a coastal area with permeable submerged breakwaters. Then, using the numerical results,the three-dimensional wave field characteristics around permeable submerged breakwaters are examined in cases of oblique incident and multi-directional random waves. Especially, the wave height, mean surface elevation and mean flow around the submerged breakwaters are discussed in relation to the variation of incident wave condition.

Real-time prediction for multi-wave COVID-19 outbreaks

  • Zuhairohab, Faihatuz;Rosadi, Dedi
    • Communications for Statistical Applications and Methods
    • /
    • 제29권5호
    • /
    • pp.499-512
    • /
    • 2022
  • Intervention measures have been implemented worldwide to reduce the spread of the COVID-19 outbreak. The COVID-19 outbreak has occured in several waves of infection, so this paper is divided into three groups, namely those countries who have passed the pandemic period, those countries who are still experiencing a single-wave pandemic, and those countries who are experiencing a multi-wave pandemic. The purpose of this study is to develop a multi-wave Richards model with several changepoint detection methods so as to obtain more accurate prediction results, especially for the multi-wave case. We investigated epidemiological trends in different countries from January 2020 to October 2021 to determine the temporal changes during the epidemic with respect to the intervention strategy used. In this article, we adjust the daily cumulative epidemiological data for COVID-19 using the logistic growth model and the multi-wave Richards curve development model. The changepoint detection methods used include the interpolation method, the Pruned Exact Linear Time (PELT) method, and the Binary Segmentation (BS) method. The results of the analysis using 9 countries show that the Richards model development can be used to analyze multi-wave data using changepoint detection so that the initial data used for prediction on the last wave can be determined precisely. The changepoint used is the coincident changepoint generated by the PELT and BS methods. The interpolation method is only used to find out how many pandemic waves have occurred in given a country. Several waves have been identified and can better describe the data. Our results can find the peak of the pandemic and when it will end in each country, both for a single-wave pandemic and a multi-wave pandemic.

Delft-3D Model을 이용한 다원주 군파일의 파랑제어 효과에 관한 연구 (Study on Effect of Wave Control by Multi-Cylinder Piles Using Delft-3D Hydrodynamic Model)

  • 이상화;장은철;이한승;정석재
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.29-35
    • /
    • 2011
  • In order to effectively control waves in a coastal zone, Multi-Cylinder Piles have been suggested as economic structures. A numerical analysis was conducted using the Delft-3D: WAVE module based on SWAN, which considered wave shoaling and refraction. Moreover, irregular waves were used to investigate the hydrodynamic characteristics of the wave interaction with the structure. In this paper, a numerical analysis was carried out to research the effect of wave control through a wave height analysis concerning an existing, concrete wave breaker and multi-cylinder piles placed at the same location. As a result, the effect of the wave control is shown using the wave breaker, multi-cylinder piles, and existing data.

센더스트를 이용한 적층형 전파흡수체의 개발 (Development of Multi-layer Electromagnetic wave Absorbers Using Sendust)

  • 류재민;김동일;제승훈
    • 한국항해항만학회지
    • /
    • 제30권8호
    • /
    • pp.637-642
    • /
    • 2006
  • 본 논문에서는 두 종류의 재료에 대한 실험이 진행되었다. 첫째, 센더스트를 이용한 적층형 전파흡수체를 연구하였다. 그 결과, 적층형 센더스트 전파흡수체는 5-Band에서 10dB 대역폭이 확장되었다. 둘째, 적층형 센더스트 전파흡수체에 수산화알루미늄의 혼합 효과를 연구하였다. 그 결과, 수산화알루미늄을 혼합한 적층형 센더스트 전파흡수체는 수산화알루미늄을 혼합하지 않은 적층형 센더스트 전파흡수체와 비교해서 5-Band에서 10dB 대역폭이 확장하였다.

Sendust를 이용한 적층형 전파흡수체의 개발 (Development of Multi-layer Electromagnetic wave Absorbers Using Sendust)

  • 류재민;김동일;제승훈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 춘계학술대회 및 창립 30주년 심포지엄(논문집)
    • /
    • pp.97-101
    • /
    • 2006
  • 본 논문에서는 센더스트를 이용한 적층형 전파흡수체를 제안하였다. 적층형 센더스트 전파흡수체는 S-Band에서 10 dB 대역폭이 확장되었다. 그리고 우리는 적층형 센더스트 전파흡수체에 수산화알루미늄의 혼합 효과를 연구하였다. 그 결과, 수산화알루미늄을 혼합한 적층형 센더스트 전파흡수체는 수산화알루미늄을 혼합하지 않은 적층형 센더스트 전파흡수체와 비교해서 S-Band에서 10 dB 대역폭이 확장하였다.

  • PDF

다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구 (Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves)

  • 오승훈;정성준;황성철;김은수;성홍근
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

지반주기를 고려한 다층지반의 평균전단파속도 추정 방법 평가 (Evaluation of Average Shear-wave Velocity Estimation Methods of Multi-layered Strata Considering Site Period)

  • 김동관
    • 한국지진공학회논문집
    • /
    • 제23권3호
    • /
    • pp.191-199
    • /
    • 2019
  • To calculate proper seismic design load and seismic design category, the exact site class for construction site is required. At present, the average shear-wave velocity for multi-layer soil deposits is calculated by the sum of shear-wave velocities without considering of vertical relationship of the strata. In this study, the transfer function for the multi-layered soil deposits was reviewed on the basis of the wave propagation theory. Also, the transfer function was accurately verified by the finite element model and the eigenvalue analysis. Three methods for site period estimation were evaluated. The sum of shear-wave velocities underestimated the average shear-wave velocities of 526 strata with large deviations. The equation of Mexican code overestimated the average shear-wave velocities. The equation of Japanese code well estimated the average shear-wave velocities with small deviation.

PDP용 반파 공진형 멀티출력 하프브리지 컨버터의 다중 공진특성에 관한 연구 (A Study on the Multi-resonant characteristics of Half-wave Resonant Type Multi-output ZVS HB Converter for the Plasma Display Panel)

  • 이재삼;손호인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권6호
    • /
    • pp.314-324
    • /
    • 2006
  • In recent years, having the advantages of being small, low in cost and high in efficiency, Half-wave resonant type, (having only one output diode), is used in ZVS Half-Bridge DC/DC converter. This paper presents the operation mode by multi-resonant factors in the Half-wave type multi-resonant converter with direct Buck chopper circuit operated in discontinuous current mode. To study the characteristics of a multi-resonant operation in steady-state, the characteristic impedances in each mode and safe operation-region(S.O.R) are reported. Computer simulation and experimental data are also riven to verify the theoretical results.

다방향 불규칙파중에서의 반잠수식 부체군에 작용하는 파강제력 (Wave Exciting Forces on Multiple Floating Bodies of Semisubmersible Type in Multi-directional Irregular Waves)

  • 조효제;구자삼;김경태
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.76-89
    • /
    • 1997
  • The hydrodynamic interaction characteristics between multiple floating bodies of semisubmersible type are examined to present the basic data for the design of huge offshore structures supported by a large number of the floating bodies in multi-directional irregular waves. The numerical approach is based on a combination of a three-dimensional source distribution method, the wave interaction theory and the spectral analysis method. The effects of wave directionality on the wave exciting forces acting on multiple floating bodies in multi-directional irregular waves also have been pointed out.

  • PDF

다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산 (Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes)

  • 홍기용;에스똘히오메자
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.