DOI QR코드

DOI QR Code

Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves

다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구

  • Seunghoon Oh (Korea Research Institute of Ships and Ocean Engineering) ;
  • Sungjun Jung (Korea Research Institute of Ships and Ocean Engineering) ;
  • Sung-Chul Hwang (Korea Research Institute of Ships and Ocean Engineering) ;
  • Eun-Soo Kim (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Hong-Gun Sung (Korea Research Institute of Ships and Ocean Engineering)
  • 오승훈 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 정성준 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 황성철 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김은수 (부산대학교 조선해양공학과) ;
  • 성홍근 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2023.06.21
  • Accepted : 2023.07.13
  • Published : 2023.08.20

Abstract

In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

Keywords

Acknowledgement

본 연구는 선박해양플랜트연구소에서 지원하는 "심해용 복합해양 플랫폼 통합 성능평가 기술개발"(PES4760)의 결과물임을 밝히는 바입니다.

References

  1. Andersen, T.L. and Frigaard, P., 2014. Wave generation in physical models: Technical documentation for AwaSys 6. Department of Civil Engineering, Aalborg University. DCE Lecture notes No. 34. 
  2. Goda, Y.. 1985. Random seas and design of maritime structures (1st edition). World Scientific Publishing.
  3. International Towing Tank Conference (ITTC), 2021, Laboratory Modelling of Waves (7.5-02-07-01.2), ITTC Recommended Procedures and Guidelines. International Towing Tank Conference. 
  4. Jia, W., Liu, S., Li, J. and Fan, Y., 2020. A three-dimensional numerical model with an l-type wave-maker system for water wave simulations by the moving boundary method. Water, 12(1), pp.161 
  5. Lee, J.H., Choi, J.W., Yun, T.K. and Ha, M.K., 2005. Generation of real sea waves based on spectral nethod and wave direction analysis. Journal of the Society of Naval Architects of Korea, 42(3), pp.212-219.  https://doi.org/10.3744/SNAK.2005.42.3.212
  6. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T. and Rikiishi, K., 1975. Observations of the directional spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 5(4), pp.750-760.  https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  7. Oh, S., Cho, S.K., Jung, D. and Sung, H.G., 2018. Development and application of two-dimensional numerical tank using desingularized indirect boundary integral equation method. Journal of Ocean Engineering and Technology, 32(6), pp.447-457.  https://doi.org/10.26748/KSOE.2018.32.6.447
  8. Oh, S., Jung, J.H. and Cho, S.K., 2020. Higher-order spectral method for regular and irregular wave simulations. Journal of Ocean Engineering and Technology, 34(6), pp.406-418.  https://doi.org/10.26748/KSOE.2020.052
  9. Oh, S., Kim, E.S. and Jung, S., 2022. Development of meta model of transfer function for wavemaker of deep ocean engineering basin. Journal of Korean Navigation and Port Reserch, 46(6), pp.471-482. 
  10. Schmittner, C.E., Scharnke, J., Pauw, W., van den Berg, J. and Hennig, J., 2013. New methods and insights in advanced and realistic basin wave modelling. OMAE 2013 - 32nd International Conference on Ocean, Offshore and Arctic Engineering. OMAE2013-11445. 
  11. Sung, H.G., Hong, S.Y. and Choi, H.S., 1997. A study on the boundary element method for numerical analysis of nonlinear free surface wave (1). Journal of the Society of Naval Architects of Korea, 34(4), pp.53-60. 
  12. Takayama, T., 1982. Theoretical properties oblique waves generated by serpent-type wave makers. Rep. the Port and Harbor Research Institute, 21(2), pp.3-48. 
  13. Takayama, T., Hiraishi, T. and Goda, Y., 1989. Comparison of single and double summation models for multi-directional wave generation. In Proc. International Association for Hydraulic Research XXIII Congress, Ottawa, Canada, August 21-25. 
  14. van den Berg, J., 2011. Comparison of methods for short crested wave analysis. OMAE 2011 - 30th International Conference on Ocean, Offshore and Arctic Engineering. OMAE2011-49443.