• Title/Summary/Keyword: multi-surface crack

Search Result 43, Processing Time 0.042 seconds

Development of Fretting Fatigue Parameter (접촉피로 파라미터의 개발)

  • Lee, Hyuk-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.92-99
    • /
    • 2011
  • In this study, new multi-axial, critical plane based, fretting fatigue crack initiation parameter is developed by the addition of a new term into the Modified Shear Stress Range(MSSR) parameter. The newly developed parameter (MSSR') is then used to evaluate fretting fatigue life of titanium alloy, Ti-6A1-4V with various contact conditions. Finite element analysis is also used in order to obtain stress distribution on the contact surface during fretting fatigue test, which is then used for the calculation of fretting fatigue parameter. The MSSR' parameter shows better performance in predicting fretting fatigue lives from the conventional fatigue data, and less scattering within fretting fatigue data with different contact geometries.

Influence of Surface Treatment of Multi-walled Carbon Nanotubes on Interfacial Interaction of Nanocomposites

  • Kim, Ki-Seok;Park, Soo-Jin
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.102-106
    • /
    • 2010
  • In this work, the effect of aminized multi-walled carbon nanotubes (NH-MWNTs) on the mechanical interfacial properties of epoxy nanocomposites was investigated by means of fracture toughness, critical stress intensity factor ($K_{IC}$), and impact strength testing, and their morphology was examined by scanning electron microscope (SEM). It was found that the incorporation of amine groups onto MWNTs was confirmed by the FT-IR and Raman spectra. The mechanical interfacial properties of the epoxy nanocomposites were remarkably improved with increasing the NH-MWNT content. It was probably attributed to the strong physical interaction between amine groups of NH-MWNTs and epoxide groups of epoxy resins. The SEM micrographs showed that NH-MWNTs were uniformly embed and bonded with epoxy resins, resulted in the prevention of the deformation and crack propagation in the NH-MWNTs/epoxy nanocomposites.

Process Sequence Design in Cold Forging of Constant Velocity Joint Housing (등속조인트 하우징의 냉간단조 공정설계)

  • 이진희;강범수;김병민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2234-2244
    • /
    • 1994
  • A process sequence of multi-operation cold forging for actual application in industry is designed with the rigid-plastic finite element method to form a constant velocity joint housing(CVJ housing). The material flow during the CVJ housing forming is axisymmetric until the final forging process for forming of ball grooves. This study treats the deformation as an axisymmetric case. The main objective of the process sequence design is to obtain preforms which satisfy the design criteria of near-net-shape product requiring less machining after forming. The process sequence design also investigates velocity distributions, effective strain distributions and forging loads, which are useful information in the real process design.

Multi-cracking modelling in concrete solved by a modified DR method

  • Yu, Rena C.;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.371-388
    • /
    • 2004
  • Our objective is to model static multi-cracking processes in concrete. The explicit dynamic relaxation (DR) method, which gives the solutions of non-linear static problems on the basis of the steady-state conditions of a critically damped explicit transient solution, is chosen to deal with the high geometric and material non-linearities stemming from such a complex fracture problem. One of the common difficulties of the DR method is its slow convergence rate when non-monotonic spectral response is involved. A modified concept that is distinct from the standard DR method is introduced to tackle this problem. The methodology is validated against the stable three point bending test on notched concrete beams of different sizes. The simulations accurately predict the experimental load-displacement curves. The size effect is caught naturally as a result of the calculation. Micro-cracking and non-uniform crack propagation across the fracture surface also come out directly from the 3D simulations.

A Study on Mechanical Property of SM53C Steel by High Frequency Induction Hardening (고주파열처리 SM53C강의 기계적 성질에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The Cam nose part of the Automobile's Cam shaft is strongly bumped with rocker arm or valve-lift. Therefore abnormal wear such as unfair wear and early wear occur in the surface. This abnormal wear causes a defect that bad timing open and close actions of the engine valve happen in the combustion chamber so the fuel gas will be combustion imperfect. Therefore, the cam shaft demands high hardness and wear resistance. In this study, high frequency heat treatment has been accomplished while wear test for material SM53C.

The Prediction of Rolling Contact Fatigue of Wheels for a Korea High Speed Train (한국형 고속철도 차량의 차륜의 구름접촉 피로 예측)

  • Choi Jeong Heum;Han Dong-Chul;Kim Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1109-1114
    • /
    • 2005
  • The rolling contact fatigue of wheels for high speed trains is a matter of increasing importance. The wheel damages from fatigue crack makes noise up and safety down. RCF-casued accidents cause traffic congestion and economical costs as well as personal injuries. In this study, we examine the rolling contact fatigue of wheels for power car running at 300km/h. Using the results of multi-body dynamic analysis and the proposed procedure of Ekberg, we calculate the fatigue index of surface-initiated fatigue, subsurface-initiated fatigue and fatigue initiated at deep material defects. As a result. the fatigue index shows us whether fatigue will appear and in which form. In addition, we present Shakedown map on surface-initiated fatigue.

  • PDF

Development of Multi-channel Eddy Current System for Inspection of Press Rolls (압연롤 검사를 위한 다중 센서 와전류 탐상 검사 시스템 개발)

  • Lee, Jae-Ho;Park, Tae-Sung;Park, Ik-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.306-312
    • /
    • 2017
  • Press rolls are constantly exposed to physical and heat stresses on their surface and are prone to crack, bruise, and spall if the accumulated stress goes beyond the critical point. Such surface phenomenon can cause them to lose their functionality and eventually lead to a halted production line. Eddy current testing can be considered a useful method to investigate the surface of the roll. The method involves the application of a high intensity magnetic field onto the surface of the roll, and thereby finding any early stage of possible defects. When the method was applied for roll inspection, the cross section of the sensor was regulated as per the overall testing speed. A smaller cross sectional area implied a better resolution but a longer testing time. In this paper, a convenient method to increase both overall system resolution and inspection speed of eddy current roll inspection is suggested by using a devised array sensor structure.

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

A study on reactive chlorine species generation enhanced by heterojunction structures on surface of IrO2-based anodes for water treatment (IrO2 기반 수처리용 산화 전극의 표면 이종 접합 구성에 따른 활성 염소종 발생 증진 특성 연구)

  • Hong, Sukhwa;Cho, Kangwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2018
  • This study interrogated multi-layer heterojunction anodes were interrogated for potential applications to water treatment. The multi-layer anodes with outer layers of $SnO_2/Bi_2O_3$ and/or $TiO_2/Bi_2O_3$ onto $IrO_2/Ta_2O_5$ electrodes were prepared by thermal decomposition and characterized in terms of reactive chlorine species (RCS) generation in 50 mM NaCl solutions. The $IrO_2/Ta_2O_5$ layer on Ti substrate (Anode 1) primarily served as an electron shuttle. The current efficiency (CE) and energy efficiency (EE) for RCS generation were significantly enhanced by the further coating of $SnO_2/Bi_2O_3$ (Anode 2) and $TiO_2/Bi_2O_3$ (Anode 3) layers onto the Anode 1, despite moderate losses in electrical conductivity and active surface area. The CE of the Anode 3 was found to show the highest RCS generation rate, whereas the multi-junction architecture (Anode 4, sequential coating of $IrO_2/Ta_2O_5$, $SnO_2/Bi_2O_3$, and $TiO_2/Bi_2O_3$) showed marginal improvement. The microscopic observations indicated that the outer $TiO_2/Bi_2O_3$ could form a crack-free layer by an incorporation of anatase $TiO_2$ particles, potentially increasing the service life of the anode. The results of this study are expected to broaden the usage of dimensionally stable anodes in water treatment with an enhanced RCS generation and lifetime.

Simulation of fracture mechanism of pre-holed concrete model under Brazilian test using PFC3D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.675-687
    • /
    • 2018
  • In the previous studies on the porous rock strength the effect of pore number and its diameter is not explicitly defined. In this paper crack initiation, propagation and coalescence in Brazilian model disc containing a single cylindrical hole and or multiple holes have been studied numerically using PFC3D. In model with internal hole, the ratio of hole diameter to model diameter was varied between 0.03, 0.17, 0.25, 0.33, and 0.42. In model with multiple hole number of holes was different in various model, i.e., one hole, two holes, three holes, four holes, five holes, six holes, seven holes, eight holes and nine holes. Diameter of these holes was 5 mm, 10 mm and 12 mm. The pre-holed Brazilian discs are numerically tested under Brazilian test. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured. The mechanism of cracks propagation in the wall of the ring type specimens is also studied. In the case of multi-hole Brazilian disc, the cracks propagation and b cracks coalescence are also investigated. The results shows that breaking of the pre-holed disc specimens is due to the propagation of radially induced tensile cracks initiated from the surface of the central hole and propagating toward the direction of diametrical loading. In the case of disc specimens with multiple holes, the cracks propagation and cracks coalescence may occur simultaneously in the breaking process of model under diametrical compressive loading. Finally the results shows that the failure stress and crack initiation stress decreases by increasing the hole diameter. Also, the failure stress decreases by increasing the number of hole which mobilized in failure. The results of these simulations were comprised with other experimental and numerical test results. It has been shown that the numerical and experimental results are in good agreement with each other.