Browse > Article
http://dx.doi.org/10.9766/KIMST.2011.14.1.092

Development of Fretting Fatigue Parameter  

Lee, Hyuk-Jae (Materials Research Center for Energy and Green Technology, Andong National University)
Publication Information
Journal of the Korea Institute of Military Science and Technology / v.14, no.1, 2011 , pp. 92-99 More about this Journal
Abstract
In this study, new multi-axial, critical plane based, fretting fatigue crack initiation parameter is developed by the addition of a new term into the Modified Shear Stress Range(MSSR) parameter. The newly developed parameter (MSSR') is then used to evaluate fretting fatigue life of titanium alloy, Ti-6A1-4V with various contact conditions. Finite element analysis is also used in order to obtain stress distribution on the contact surface during fretting fatigue test, which is then used for the calculation of fretting fatigue parameter. The MSSR' parameter shows better performance in predicting fretting fatigue lives from the conventional fatigue data, and less scattering within fretting fatigue data with different contact geometries.
Keywords
Fretting Fatigue; Multi-axial Parameter; Critical Plane; Titanium Alloy; Finite Element Analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cowles, A. B., "High Cycle Fatigue in Aircraft Gas Turbines - An Industry Perspective", Int. J Fatigue, Vol. 20, pp. 147-163, 1999.
2 Nicholas, T., "Critical issues in high cycle fatigue", Int. J Fatigue, Vol. 21, pp. S221-231, 1999.   DOI   ScienceOn
3 Bannatine, J. A., Comer, J. J., Handrock, J. L., Fundamentals of Metal Fatigue Analysis, Prentice Hall, NJ, 1990.
4 Krupp, U., Fatigue Crack Propagation in Metals and Alloys, Wiley-VCH, Weinheim, 2007.
5 Krgo, A., Kallmeyer, A. R., Kurath, P., "Evaluation of HCF Multiaxial Fatigue Life Prediction Methodlogies for Ti-6Al-4V", In Preceedings of the 5th National Turbine Engines High Cycle Fatigue Conference, Arizona, 2000.
6 Namjoshi, S., Mall, S., Jain, V. K., Jin, O., "Fretting Fatigue Crack Initiation Mechanism in Ti-6Al-4V", Fatigue Fract. Engr. Mater. Struct., Vol. 25, pp. 955-964, 2002.   DOI   ScienceOn
7 Walker, K., "The Effective Stress Ratio during Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum", Effects on Environment and Complex Load History on Fatigue Life, Philadelphia, pp. 1-14, 1970.
8 Fatemi, A., Socie, D., "A Critical Plane Approach to Multiaxial Fatigue Damage Including Out of Phase Loading", Fatigue Fract. Engr. Mater. Struct., Vol. 11, pp. 149-165, 1988.   DOI   ScienceOn
9 Waterhouse, R. B., "Fretting Fatigue", Int. Mater. Rev., Vol. 37, 77-92, 1992.   DOI
10 Smith, K., Watson, P., Topper, T., "A Stress-Strain Function for the Fatigue of Metals", J. Mater. JMLSA, Vol. 5, pp. 767-778, 1970.
11 Findley, W. N., "Fatigue of Metals Under Combination of Stresses", Trans. ASME, Vol. 79, pp. 1337-1352, 1975.
12 Szolwinski, M., Farris, T., "Mechanics of Fretting Fatigue Crack Formation", Wear, Vol. 198, pp. 93 -107, 1996.   DOI   ScienceOn
13 Waterhouse, R. B., Fretting Fatigue, Applied Science Publishers, London, 1981.
14 Hoeppner, D., Goss, G., "A Fretting-Fatigue Damage Threshold Concept", Wear, Vol. 27, pp. 61-70, 1974.   DOI   ScienceOn
15 Lykins, C. D., Mall, S., Jain, V. K., "A Shear Stress Based Parameter for Fretting Fatigue Crack Initiation", Fatigue Fract. Engr. Mater. Struct., Vol. 24, pp. 461-473, 2001.   DOI   ScienceOn
16 Shigley, J. E., Mischke, C. R., Mechanical Engineering Design, McGraw-Hill, NY, 1989.