• 제목/요약/키워드: multi-response optimization

검색결과 217건 처리시간 0.027초

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

다중반응표면분석방법을 이용한 다꾸찌 다특성 실험에 대한 분석 방법 (Multi-response Optimization by a Response Surface Approach for a Taguchi-Type Multi-characteristic Experiments)

  • 이우선
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제4권1호
    • /
    • pp.39-64
    • /
    • 2004
  • Taguchi's multi-characteristic experiments seek proper choice of levels of contollable factors which satisfy that all reponses of characteristics in a desirable range simultaneously. This aim can be achieved by response surface techniques that allow more flexible in modeling than traditional Taguchi's parameter design. In this article, a multi-response surface modeling and analysis techniques is proposed to deal with the multi-characteristic optimization problem in experimentation with Taguchi's controllable and noise factors.

  • PDF

반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구 (Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

프로바이오틱 유산균 발효조건 탐색을 위한 다반응 최적화의 활용 (Applying Multi-Response Optimization to Explore Fermentation Conditions of Probiotics)

  • 임성수
    • Journal of Dairy Science and Biotechnology
    • /
    • 제41권2호
    • /
    • pp.45-56
    • /
    • 2023
  • This review serves two purposes: first, to promote the use of improved optimization techniques in response surface methodology (RSM); and second, to enhance the optimum conditions for the fermentation of probiotics. According to research in dairy science, Lactiplantibacillus plantarum K79 is a candidate probiotic that has beneficial health effects, such as lowering blood pressure. The optimum conditions for L. plantarumK79 to produce peptides with angiotensin-converting enzyme (ACE) inhibitory activity were proposed, through modeling each of ACE inhibitory activity and pH as a function of the four factors that are skim milk concentration (%), incubation temperature (℃), incubation time (hours), and starter added amount (%). To estimate optimum conditions, the researchers employed a desirability-based multi-response optimization approach, utilizing third-order models with a nonsignificant lack of fit. The estimated optimum fermentation conditions for L. plantarum K79 were as follows: a skim milk concentration of 10.76%, an incubation temperature of 36.9℃, an incubation time of 23.76 hours, and a starter added amount of 0.098%. Under these conditions, the predicted ACE inhibitory activity was 91.047%, and the predicted pH was 4.6. These predicted values achieved the objectives of the multi-response optimization in this study.

다층분석법을 이용한 대규모 파라미터 설계 최적화 (Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems)

  • 김영진
    • 경영과학
    • /
    • 제24권2호
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.

Improving the Quality of Response Surface Analysis of an Experiment for Coffee-supplemented Milk Beverage: II. Heterogeneous Third-order Models and Multi-response Optimization

  • Rheem, Sungsue;Rheem, Insoo;Oh, Sejong
    • 한국축산식품학회지
    • /
    • 제39권2호
    • /
    • pp.222-228
    • /
    • 2019
  • This research was motivated by our encounter with the situation where an optimization was done based on statistically non-significant models having poor fits. Such a situation took place in a research to optimize manufacturing conditions for improving storage stability of coffee-supplemented milk beverage by using response surface methodology, where two responses are $Y_1$=particle size and $Y_2$=zeta-potential, two factors are $F_1$=speed of primary homogenization (rpm) and $F_2$=concentration of emulsifier (%), and the optimization objective is to simultaneously minimize $Y_1$ and maximize $Y_2$. For response surface analysis, practically, the second-order polynomial model is almost solely used. But, there exists the cases in which the second-order model fails to provide a good fit, to which remedies are seldom known to researchers. Thus, as an alternative to a failed second-order model, we present the heterogeneous third-order model, which can be used when the experimental plan is a two-factor central composite design having -1, 0, and 1 as the coded levels of factors. And, for multi-response optimization, we suggest a modified desirability function technique. Using these two methods, we have obtained statistical models with improved fits and multi-response optimization results with the predictions better than those in the previous research. Our predicted optimum combination of conditions is ($F_1$, $F_2$)=(5,000, 0.295), which is different from the previous combination. This research is expected to help improve the quality of response surface analysis in experimental sciences including food science of animal resources.

Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine

  • Rahman, Mohammad S.;Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.303-315
    • /
    • 2017
  • This paper presents a review on getting a Weighted Multi-Objective Optimization (WMO) of Tuned Mass Damper (TMD) parameters based on Response Surface Methodology (RSM) coupled central composite design and Weighted Desirability Function (WDF) to attenuate the earthquake vibration of a jacket supported Offshore Wind Turbine (OWT). To optimize the parameters (stiffness and damping coefficient) of damper, the frequency ratio and damping ratio were considered as a design variable and the top displacement and frequency response were considered as objective functions. The optimization has been carried out under only El Centro earthquake results and after obtained the optimal parameters, more two earthquakes (California and Northridge) has been performed to investigate the performance of optimal damper. The obtained results also compared with the different conventional TMD's designed by Den Hartog's, Sadek et al.'s and Warburton's method. From the results, it was found that the optimal TMD based on RSM shows better response than the conventional damper. It is concluded that the proposed response model offers an efficient approach regarding the TMD optimization.

Trade-off Analysis in Multi-objective Optimization Using Chebyshev Orthogonal Polynomials

  • Baek Seok-Heum;Cho Seok-Swoo;Kim Hyun-Su;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.366-375
    • /
    • 2006
  • In this paper, it is intended to introduce a method to solve multi-objective optimization problems and to evaluate its performance. In order to verify the performance of this method it is applied for a vertical roller mill for Portland cement. A design process is defined with the compromise decision support problem concept and a design process consists of two steps: the design of experiments and mathematical programming. In this process, a designer decides an object that the objective function is going to pursuit and a non-linear optimization is performed composing objective constraints with practical constraints. In this method, response surfaces are used to model objectives (stress, deflection and weight) and the optimization is performed for each of the objectives while handling the remaining ones as constraints. The response surfaces are constructed using orthogonal polynomials, and orthogonal array as design of experiment, with analysis of variance for variable selection. In addition, it establishes the relative influence of the design variables in the objectives variability. The constrained optimization problems are solved using sequential quadratic programming. From the results, it is found that the method in this paper is a very effective and powerful for the multi-objective optimization of various practical design problems. It provides, moreover, a reference of design to judge the amount of excess or shortage from the final object.

다중반응최적화를 위한 상호교호적 접근법 (An Interactive Approach to Multiple Response Optimization)

  • 이평수;박경삼
    • 한국경영과학회지
    • /
    • 제40권3호
    • /
    • pp.49-61
    • /
    • 2015
  • We study the problem of multiple response optimization (MRO) and focus on the selection of input levels which will produce desirable output quality. We propose an interactive multiple objective optimization approach to the input design. The earlier interactive methods utilized for MRO communicate with the decision maker only using the response variable values, in order to improve the current response values, thereby resulting in the corresponding design solution automatically. In their interaction steps of preference articulation, no account is taken of any active changes in design variable values. On the contrary, our approach permits the decision maker to change the design variable values in its interaction stage, which makes possible the consideration of the preference or economics of the design variable side. Using some typical value functions, we also demonstrate that our method converges reasonably well to the known optimal solutions.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.