• Title/Summary/Keyword: multi-response design

Search Result 558, Processing Time 0.027 seconds

Improvement of efficiency in Multi-layer IPMSM using Response Surface Methodology (반응 표면법을 이용한 Multi-layer 매입형 영구자석 동기정동기의 효율 향상)

  • Fang, Liang;Kwon, Soon-O;Lee, Sang-Ho;Zhang, Peng;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.777-778
    • /
    • 2006
  • This paper deals with the optimum rotor design approach about the multi-layer design of the buried magnets in an Interior Permanent Magnet Synchronous Motor (IPMSM), on the efficiency improvement by using Response Surface Methodology (RSM). In the multi-layer design of the prototype 15kw IPMSM, the constant amount of buried PM is split from the single-layer into double-layer design for improving the efficiency characteristics. The optimum double-layer rotor structure is built with the help of RSM analysis. The improvement of IPMSM efficiency is verified by the Finite Element Method (FEM) results comparison with the prototype single-layer IPMSM.

  • PDF

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

Multi-Objective Optimal Design of a Single Phase AC Solenoid Actuator Used for Maximum Holding Force and Minimum Eddy Current Loss

  • Yoon, Hee-Sung;Eum, Young-Hwan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.218-223
    • /
    • 2008
  • A new Pareto-optimal design algorithm, requiring least computational work, is proposed for a single phase AC solenoid actuator with multi-design-objectives: maximizing holding force and minimizing eddy current loss simultaneously. In the algorithm, the design space is successively reduced by a suitable factor, as iteration repeats, with the center of pseudo-optimal point. At each iteration, the objective functions are approximated to a simple second-order response surface with the CCD sampling points generated within the reduced design space, and Pareto-optimal solutions are obtained by applying($1+{\lambda}$) evolution strategy with the fitness values of Pareto strength.

Multi-Optimal Designs for Second-Order Response Surface Models

  • Park, You-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.195-208
    • /
    • 2009
  • A conventional single design optimality criterion has been used to select an efficient experimental design. But, since an experimental design is constructed with respect to an optimality criterion pre specified by investigators, an experimental design obtained from one optimality criterion which is superior to other designs may perform poorly when the design is evaluated by another optimality criterion. In other words, none of these is entirely satisfactory and even there is no guarantee that a design which is constructed from using a certain design optimality criterion is also optimal to the other design optimality criteria. Thus, it is necessary to develop certain special types of experimental designs that satisfy multiple design optimality criteria simultaneously because these multi-optimal designs (MODs) reflect the needs of the experimenters more adequately. In this article, we present a heuristic approach to construct second-order response surface designs which are more flexible and potentially very useful than the designs generated from a single design optimality criterion in many real experimental situations when several competing design optimality criteria are of interest. In this paper, over cuboidal design region for $3\;{\leq}\;k\;{\leq}\;5$ variables, we construct multi-optimal designs (MODs) that might moderately satisfy two famous alphabetic design optimality criteria, G- and IV-optimality criteria using a GA which considers a certain amount of randomness. The minimum, average and maximum scaled prediction variances for the generated response surface designs are provided. Based on the average and maximum scaled prediction variances for k = 3, 4 and 5 design variables, the MODs from a genetic algorithm (GA) have better statistical property than does the theoretically optimal designs and the MODs are more flexible and useful than single-criterion optimal designs.

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine

  • Rahman, Mohammad S.;Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper presents a review on getting a Weighted Multi-Objective Optimization (WMO) of Tuned Mass Damper (TMD) parameters based on Response Surface Methodology (RSM) coupled central composite design and Weighted Desirability Function (WDF) to attenuate the earthquake vibration of a jacket supported Offshore Wind Turbine (OWT). To optimize the parameters (stiffness and damping coefficient) of damper, the frequency ratio and damping ratio were considered as a design variable and the top displacement and frequency response were considered as objective functions. The optimization has been carried out under only El Centro earthquake results and after obtained the optimal parameters, more two earthquakes (California and Northridge) has been performed to investigate the performance of optimal damper. The obtained results also compared with the different conventional TMD's designed by Den Hartog's, Sadek et al.'s and Warburton's method. From the results, it was found that the optimal TMD based on RSM shows better response than the conventional damper. It is concluded that the proposed response model offers an efficient approach regarding the TMD optimization.

Response Surface Approximation for Fatigue Life Prediction and Its Application to Multi-Criteria Optimization With a Priori Preference Information (피로수명예측을 위한 반응표면근사화와 순위선호정보를 가진 다기준최적설계에의 응용)

  • Baek, Seok-Heum;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.114-126
    • /
    • 2009
  • In this paper, a versatile multi-criteria optimization concept for fatigue life prediction is introduced. Multi-criteria decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

Numerical Optimization of a Multi-blades Centrifugal Fan for High-efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.32-38
    • /
    • 2004
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard $k-{epsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

Numerical Optimization of A Multi-Blades Centrifugal Fan For High-Efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.385-390
    • /
    • 2003
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Wavier-Stokes equations with standard $k-{\varepsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

  • PDF