• Title/Summary/Keyword: multi-mode design

Search Result 461, Processing Time 0.029 seconds

Prediction of Column Axial Force in X-braced Seismic Steel Frames Considering Brace Buckling (가새좌굴을 고려한 X형 내진 가새골조의 기둥축력 산정법)

  • Yoon, Won Soon;Lee, Cheol Ho;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.523-535
    • /
    • 2014
  • According to the capacity design concept underlying current steel seimsic provisions, the braces in concentrically braced frames should dissipate seismic energy through cyclic tension yielding and compression buckling. On the other hand, the beams and the columns in the braced bay should remain elastic for gravity load actions and additional column axial forces resulting from the brace buckling and yielding. However, due to the difficulty in accumulating the yielding and buckling-induced column forces from different stories, empirical and often conservative approaches have been used in design practice. Recently a totally different approach was proposed by Cho, Lee, and Kim (2011) for the prediction of column axial forces in inverted V-braced frames by explicitly considering brace buckling. The idea proposed in their study is extended to X-braced seismic frames which have structural member configurations and load transfer mechanism different from those of inverted V-braced frames. Especially, a more efficient rule is proposed in combining multi-mode effects on the column axial forces by using the modal-mass based weighting factor. The four methods proposed in this study are evaluated based on extensive inelastic dynamic analysis results.

Research of z-axis geometric dose efficiency in multi-detector computed tomography (MDCT 장치의 z-축 기하학적 선량효율에 관한 연구)

  • Kim, You-Hyun;Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.167-175
    • /
    • 2006
  • With the recent prevalence of helical CT and multi-slice CT, which deliver higher radiation dose than conventional CT due to overbeaming effect in X-ray exposure and interpolation technique in image reconstruction. Although multi-detector and helical CT scanner provide a variety of opportunities for patient dose reduction, the potential risk for high radiation levels in CT examination can't be overemphasized in spite of acquiring more diagnostic information. So much more concerns is necessary about dose characteristics of CT scanner, especially dose efficient design as well as dose modulation software, because dose efficiency built into the scanner's design is probably the most important aspect of successful low dose clinical performance. This study was conducted to evaluate z-axis geometric dose efficiency in single detector CT and each level multi-detector CT, as well as to compare z-axis dose efficiency with change of technical scan parameters such as focal spot size of tube, beam collimation, detector combination, scan mode, pitch size, slice width and interval. The results obtained were as follows ; 1. SDCT was most highest and 4 MDCT was most lowest in z-axis geometric dose efficiency among SDCT, 4, 8, 16, 64 slice MDCT made by GE manufacture. 2. Small focal spot was 0.67-13.62% higher than large focal spot in z-axis geometric dose efficiency at MDCT. 3. Large beam collimation was 3.13-51.52% higher than small beam collimation in z-axis geometric dose efficiency at MDCT. 4. Z-axis geometric dose efficiency was same at 4 slice MDCT in all condition and 8 slice MDCT of large beam collimation with change of detector combination, but was changed irregularly at 8 slice MDCT of small beam collimation and 16 slice MDCT in all condition with change of detector combination. 5. There was no significant difference for z-axis geometric dose efficiency between conventional scan and helical scan, and with change of pitch factor, as well as change of slice width or interval for image reconstruction. As a conclusion, for reduction of patient radiation dose delivered from CT examination we are particularly concerned with dose efficiency of equipment and have to select proper scanning parameters which increase z-axis geometric dose efficiency within the range of preserving optimum clinical information in MDCT examination.

  • PDF

A Study on Automatic Interface Generation by Protocol Mapping (Protocol Mapping을 이용한 인터페이스 자동생성 기법 연구)

  • Lee Ser-Hoon;Kang Kyung-Goo;Hwang Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.820-829
    • /
    • 2006
  • IP-based design methodology has been popularly employed for SoC design to reduce design complexity and to cope with time-to-market pressure. Due to the request for high performance of current mobile systems, embedded SoC design needs a multi-processor to manage problems of high complexity and the data processing such as multimedia, DMB and image processing in real time. Interface module for communication between system buses and processors are required, since many IPs employ different protocols. High performance processors require interface module to minimize the latency of data transmission during read-write operation and to enhance the performance of a top level system. This paper proposes an automatic interface generation system based on FSM generated from the common protocol description sequence of a bus and an IP. The proposed interface does not use a buffer which stores data temporally causing the data transmission latency. Experimental results show that the area of the interface circuits generated by the proposed system is reduced by 48.5% on the average, when comparing to buffer-based interface circuits. Data transmission latency is reduced by 59.1% for single data transfer and by 13.3% for burst mode data transfer. By using the proposed system, it becomes possible to generate a high performance interface circuit automatically.

Analysis on Pool Temperature Variation along Pool Water Management System Operation in Research Reactor (연구용원자로에서 수조수관리계통 운전에 따른 수조수 온도 해석)

  • Choi, Jungwoon;Lee, Sunil;Park, Ki-Jung;Seo, KyoungWoo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • The domestic unique research reactor, HANARO (Hi-flux Advanced Neutron Application ReactOr), has been constructed with the open-pool, the core is submerged in, for the multi-purpose neutron application. The reactor has a primary cooling system to remove the fission heat from the core and its connected fluidic systems. Since the works are required at the reactor pool top as a characteristic of the research reactor, the radiation shall be minimized with the operation of the hot water layer system to avoid unnecessary radiation exposure on the workers during work at the pool top. Moreover, the pool water management system is connected to the reactor pool to maintain the pool temperature below $50^{\circ}C$ to minimize the uprising radioactive gas or impurity from the colder pool bottom. For the efficient flow rate of the PWMS, the thermal capacity of heat exchanger is selected with 260 kW in the normal operation condition. In this paper, the modeling is formulated to figure out whether or not each pool temperature maintains below the temperature limit and the calculation results show that the designed PWMS heat exchanger has enough capacity with the design margin regardless of the reactor operation mode.

Electromagnetic Micro x-y Stage for Probe-Based Data Storage

  • Park, Jae-joon;Park, Hongsik;Kim, Kyu-Yong;Jeon, Jong-Up
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.1
    • /
    • pp.84-93
    • /
    • 2001
  • An electromagnetic micro x-y stage for probe-based data storage (PDS) has been fabricated. The x-y stage consists of a silicon body inside which planar copper coils are embedded, a glass substrate bonded to the silicon body, and eight permanent magnets. The dimensions of flexures and copper coils were determined to yield $100{\;}\mu\textrm{m}$ in x and y directions under 50 mA of supplied current and to have 440 Hz of natural frequency. For the application to PDS devices, electromagnetic stage should have flat top surface for the prevention of its interference with multi-probe array, and have coils with low resistance for low power consumption. In order to satisfy these design criteria, conducting planar copper coils have been electroplated within silicon trenches which have high aspect ratio ($5{\;}\mu\textrm{m}$in width and $30{\;}\mu\textrm{m}$in depth). Silicon flexures with a height of $250{\;}\mu\textrm{m}$ were fabricated by using inductively coupled plasma reactive ion etching (ICP-RIE). The characteristics of a fabricated electromagnetic stage were measured by using laser doppler vibrometer (LDV) and dynamic signal analyzer (DSA). The DC gain was $0.16{\;}\mu\textrm{m}/mA$ and the maximum displacement was $42{\;}\mu\textrm{m}$ at a current of 180 mA. The measured natural frequency of the lowest mode was 325 Hz. Compared with the designed values, the lower natural frequency and DC gain of the fabricated device are due to the reverse-tapered ICP-RIE process and the incomplete assembly of the upper-sided permanent magnets for LDV measurements.

  • PDF

The Design of the Ternary Sequential Logic Circuit Using Ternary Logic Gates (3치 논리 게이트를 이용한 3치 순차 논리 회로 설계)

  • 윤병희;최영희;이철우;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.52-62
    • /
    • 2003
  • This paper discusses ternary logic gate, ternary D flip-flop, and ternary four-digit parallel input/output register. The ternary logic gates consist of n-channel pass transistors and neuron MOS(νMOS) threshold inverters on voltage mode. They are designed with a transmission function using threshold inverter that are in turn, designed using Down Literal Circuit(DLC) that has various threshold voltages. The νMOS pass transistor is very suitable gate to the multiple-valued logic(MVL) and has the input signal of the multi-level νMOS threshold inverter. The ternary D flip-flop uses the storage element of the ternary data. The ternary four-digit parallel input/output register consists of four ternary D flip-flops which can temporarily store four-digit ternary data. In this paper, these circuits use 3.3V low power supply voltage and 0.35m process parameter, and also represent HSPICE simulation result.

Noise Source Identification of Electric Parking Brake by Using Noise Contribution Analysis and Identifying Resonance of Vehicle System (차량 시스템의 소음 기여도분석 및 공진 규명을 통한 전자식 주차 브레이크 소음원 규명)

  • Park, Goon-Dong;Seo, Bum-June;Yang, In-Hyung;Jeong, Jae-Eun;Oh, Jae-Eung;Lee, Jung-Youn
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.119-125
    • /
    • 2012
  • Caliper intergrated Electric Parking Brake (EPB) is an automatic parking brake system, attached to rear caliper. Because EPB uses luxury vehicles recently, the drivers of vehicles are sensitive to the EPB noise. EPB is operated by the motor and gear, so noise is generated by motor and gear. In order to reduce noise, One of EPB manufacturers uses helical gear and changes the shape of EPB housing. But these methods are not optimized for reduction of interior noise. There are many noise transfer paths into vehicle interior and it is difficult to identify the noise sources. Therefore, in this study, we performed contribution analysis and modal testing in the vehicle system. It is possible to distinguish between air-borne noise and structure-borne noise in the vehicle interior noise by comparing interior noise peak with resonance mode map.

The Design and Performance Test of Tracking Actuator for NFR system (근접장 기록 장치를 위한 트랙킹 구동기의 설계 및 실험)

  • Kim, Gi-Hyeon;Lee, Mun-Gu;Gwon, Dae-Gap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.174-181
    • /
    • 2001
  • Nowadays, the improvement and development of Multi-media and information & communication technology is rapidly processed. They need large data storage capacity. So that, many studies and researches in data storage have been carried out. According to them, the data storage capacity has been increased. But the limitation of storage capacity is happened for several problems. One of them is spot & pit size in optical and magnetic data storage and another is the resolution of actuators. The problems in spot & pit size are covered by new data storage methods-- for examples, AFM(Atomic Force Microscopy), MO(Magneto-optical) system, and NFR(Near-Field decoding) system etc. But the resolution limit of an actuator was not developed and doesn\`t follow up the development of spot & pit size. Because of them, we should improve a resolution of an actuator. Especially, in this paper an actuator if studied and designed for NFR (in using SIL(Solid Immersion Lens) system. It is a dual stage actuator, which consists of a Fine actuator and a Coarse actuator. and should desire 100nm accuracy. Its actuating force generation method is VCM(Voice Coil Motor). The Fine actuator is composed of 4-leaf springs and a bobbin wrapped by coil. The Coarse actuator has Coils and 3-Roller bearings. Also, The Characteristics of designed actuator for NFR system is estimated by Sine-Swept mode and LDV(Laser Doppler Vibro-meter).

  • PDF

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF

On Implementing and Deploying Label Distribution Protocol in MultiProtocal Label Switching Systems (MPLS시스템에서 LDP 기능 구현 및 활용 방안)

  • 김미희;이종협;이유경
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.2
    • /
    • pp.270-281
    • /
    • 2003
  • ETF made the RFCs of MPLS technologies for providing the QoS of ATM or Frame Relay and the flexibility&scalability of IP on the Internet services. IETF has been expanding MPLS technologies as a common control component for supporting the various switching technologies called GMPLS. Also, IETF has standardized the signaling protocols based on such technologies, such as LDP, CR-LDP and RSVP-TE. ETRI developed the MPLS system based on ATM switch in order to provide more reliable services, differentiated services and value-added services like the VPN and traffic engineering service on the Korea Public Sector network. We are planning on deploying model services and commercial services on that network. This paper explains the basic functions of LDP, design and development of LDP on our system, and compares with LDP development and operation on other MPLS systems made by Cisco, Juniper, Nortel and Riverstone. In conclusion, this paper deduces the future services and applications by LDP through these explanation and comparison.