• 제목/요약/키워드: multi-locus sequence analysis

검색결과 25건 처리시간 0.019초

Exploration of genetic diversity of Bacillus spp. from industrial shrimp ponds in Vietnam by multi-locus sequence typing

  • Le, Xuan The;Pham, Dung Tien;Pham, Tuan Anh;Tran, Tung Thanh;Khuat, Thanh Huu;Le, Hoa Quang;Vu, Ut Ngoc
    • Fisheries and Aquatic Sciences
    • /
    • 제22권8호
    • /
    • pp.17.1-17.9
    • /
    • 2019
  • Bacillus is a diverse genus consisting of more than 200 species with extensive genetic diversity. Their beneficial effects in industrial shrimp farming have been well documented. However, little is known about the biodiversity of the Bacillus spp. in this aquaculture system. Taxonomic analysis by 16S rRNA sequencing does not always allow species-level identification of Bacillus spp. In this study, 26 Bacillus isolates from two industrial Litopenaeus vannamei shrimp ponds in Bac Lieu Province, Vietnam, were analyzed for their genetic diversity by multi-locus sequence typing (MLST). A total of 22 sequence types were identified and segregated into four distinct clusters, corresponding to B. subtilis, B. velezensis, B. siamensis, and B. licheniformis. Bacillus subtilis and B. velezensis accounted for more than 73% of the Bacillus isolates. Notably, the MLST scheme exhibited high discriminatory power and might be further simplified to be a convenient method to identify species of the genus Bacillus.

Genotyping of Giardia duodenalis Isolates from Dogs in Guangdong, China Based on Multi-Locus Sequence

  • Zheng, Guochao;Alsarakibi, Muhamd;Liu, Yuanjia;Hu, Wei;Luo, Qin;Tan, Liping;Li, Guoqing
    • Parasites, Hosts and Diseases
    • /
    • 제52권3호
    • /
    • pp.299-304
    • /
    • 2014
  • This study aimed to identify the assemblages (or subassemblages) of Giardia duodenalis by using normal or nested PCR based on 4 genetic loci: glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), ${\beta}$-giardin (bg), and small subunit ribosomal DNA (18S rRNA) genes. For this work, a total of 216 dogs' fecal samples were collected in Guangdong, China. The phylogenetic trees were constructed with MEGA5.2 by using the neighbor-joining method. Results showed that 9.7% (21/216) samples were found to be positive; moreover, 10 samples were single infection (7 isolates assemblage A, 2 isolates assemblage C, and 1 isolate assemblage D) and 11 samples were mixed infections where assemblage A was predominant, which was potentially zoonotic. These findings showed that most of the dogs in Guangdong were infected or mixed-infected with assemblage A, and multi-locus sequence typing could be the best selection for the genotype analysis of dog-derived Giardia isolates.

rpoB gene sequencing for phylogenetic analysis of avian pathogenic Escherichia coli

  • Kwon, Hyuk-Joon;Seong, Won-Jin;Kim, Tae-Eun;Won, Yong-Jin;Kim, Jae-Hong
    • 대한수의학회지
    • /
    • 제55권1호
    • /
    • pp.31-39
    • /
    • 2015
  • The present study was conducted to determine the full rpoB and eight house-keeping gene sequences of 78 and 35, respectively, avian pathogenic E. coli (APEC) strains. Phylogenetic comparison with 66 E. coli and Shigella strains from GenBank and EMBL was also conducted. Based on the full rpoB sequence, 50 different rpoB sequence types (RSTs) were identified. RST 1 was assigned to a major RST that included 34.7% (50/144) of the analyzed strains. RST 2 to RST 50 were then assigned to other strains with higher nucleotide sequence similarity to RST 1 in order. RST 1, 11, and 23 were mixed with APEC along with human commensal and pathogenic strains while RST 2, 6, 9, 13-15, 22, 24, 25, 33, 34, 36, and 41 were unique to APEC strains. Only five APEC strains grouped into RST 32 and 47, which contained human pathogenic E. coli (HPEC). Thus, most of the APEC strains had genetic backgrounds different from HPEC strains. However, the minor APEC strains similar to HPEC should be considered potential zoonotic risks. The resolution power of multi-locus sequence typing (MLST) was better than RST testing. Nevertheless, phylogenetic analysis of rpoB was simpler and more economic than MLST.

Morphological and Molecular Characterization of Pseudocercospora chionanthi-retusi Causing Leaf Spot on Chionanthus retusus in Korea

  • Choi, In-Young;Abasova, Lamiya;Choi, Joon-Ho;Shin, Hyeon-Dong
    • 식물병연구
    • /
    • 제28권2호
    • /
    • pp.57-60
    • /
    • 2022
  • Leaves of Chionanthus retusus were found to be damaged by leaf spot disease associated with a fungus in Iksan, Korea. Leaf spots were angular to irregular, vein-limited, scattered, 1-8 mm diameter, brownish-gray to dark brown when dry, with heavy fructification. The pathogen causes premature defoliation of C. retusus plant and was identified as Pseudocercospora chionanthi-retusi based on morphological and molecular-phylogenetic analyses. The phylogenetic tree was constructed using multi-locus DNA sequence data of partial actin (actA), partial translation elongation factor 1-alfa (tef1), partial DNA-directed RNA polymerase II second largest subunit (rpb2) genes, and internal transcribed spacer regions. Current study provides detail morphological description of P. chionanthi-retusi on C. retusus in Korea, with supports of phylogenetic analysis and pathogenicity test.

Identification and Characterization of Pseudocercospora cornicola Causing Leaf Spots on Cornus officinalis

  • In-Young Choi;Ho-Jong Ju;Lamiya Abasova;Joon-Ho Choi;Hyeon-Dong Shin
    • 한국균학회지
    • /
    • 제50권2호
    • /
    • pp.131-136
    • /
    • 2022
  • Cornus officinalis plants that grow in several locations in Korea have been found to be infected with leaf spot disease. Symptoms include necrotic lesions, which are angular, irregularly shaped, vein-limited, and dark brown, on both sides of the leaves. The causal agent of the disease was identified to be Pseudocercospora cornicola based on the morphological characteristics of the fungus and molecular phylogenetic analysis of the obtained multi-locus DNA sequence data. This is the first report investigating P. cornicola found on C. officinalis in Korea.

Genetic Variations of Aspergillus fumigatus Clinical Isolates from Korea

  • Kim, Sunghyun;Ma, Pan-Gon;Park, Young-Seok;Yu, Young-Bin;Hwang, Kyu Jam;Kim, Young Kwon
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.223-229
    • /
    • 2017
  • Fungal infections by human pathogenic fungi are increasing globally in elderly, children and immune suppressed or deficient patients. Aspergillus fumigatus is one of the well-known pathogenic fungi and causes aspergilloses in human world widely. However, current identification and classification methods based on its phenotypic characteristics still have limitations. Therefore, currently, molecular biological tools using their DNA sequences are used for genotype identification and classification. In the present study, in order to analyze genetic variations of A. fumigatus clinical isolates, a total of six housekeeping genes were amplified by PCR using specific primer pairs and multi-locus sequence typing (MLST) assay. Results from phylogenetic tree analysis showed that most A. fumigatus strains (88.9%) from respiratory specimens were classified into cluster A and B, and approximately half of A. fumigatus strains (46%) from non-respiratory specimens were classified into cluster C and D. Although the sample size was limited, genetic characteristics of A. fumigatus clinical isolates according to their origins were very similar and well-correlated with other clinical data.

Identification and Characterization of Xanthomonas arboricola pv. juglandis Causing Bacterial Blight of Walnuts in Korea

  • Kim, Hyun Sup;Cheon, Wonsu;Lee, Younmi;Kwon, Hyeok-Tae;Seo, Sang-Tae;Balaraju, Kotnala;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.137-151
    • /
    • 2021
  • The present study describes the bacterial blight of walnut, caused by Xanthomonas arboricola pv. juglandis (Xaj) in the northern Gyeongbuk province, Korea. Disease symptoms that appear very similar to anthracnose symptoms were observed in walnut trees in June 2016. Pathogens were isolated from disease infected leaves, fruits, shoots, bud, flower bud of walnut, and cultured onto yeast dextrose carbonate agar plates. Isolated bacteria with bacterial blight symptoms were characterized for their nutrient utilization profiles using Biolog GN2 and Vitek 2. In addition, isolates were subjected to physiological, biochemical, and morphological characterizations. Furthermore, isolates were identified using 16S rDNA sequence analysis, and multi-locus sequence analysis using atpD, dnaK, efp, and rpoD. To confirm pathogenicity, leaves, fruits, and stems of 3-year-old walnut plants were inoculated with bacterial pathogen suspensions as a foliar spray. One week after inoculation, the gray spots on leaves and yellow halos around the spots were developed. Fruits and stems showed browning symptoms. The pathogen Xaj was re-isolated from all symptomatic tissues to fulfill Koch's postulates, while symptoms were not appeared on control plants. On the other hand, the symptoms were very similar to the symptoms of anthracnose caused by Colletotrichum gloeosporioides. When walnut plants were inoculated with combined pathogens of Xaj and C. gloeosporioides, disease symptoms were greater in comparison with when inoculated alone. Xaj population size was more in the month of April than March due to their dormancy in March, and sensitive to antibiotics such as oxytetracycline and streptomycin, while resistant to copper sulfate.

Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tagesimple sequence repeat bands in Panax ginseng Meyer

  • Kim, Nam-Hoon;Choi, Hong-Il;Kim, Kyung Hee;Jang, Woojong;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.130-135
    • /
    • 2014
  • Background: Panax ginseng, the most famous medicinal herb, has a highly duplicated genome structure. However, the genome duplication of P. ginseng has not been characterized at the sequence level. Multiple band patterns have been consistently observed during the development of DNA markers using unique sequences in P. ginseng. Methods: We compared the sequences of multiple bands derived from unique expressed sequence tagsimple sequence repeat (EST-SSR) markers to investigate the sequence level genome duplication. Results: Reamplification and sequencing of the individual bands revealed that, for each marker, two bands around the expected size were genuine amplicons derived from two paralogous loci. In each case, one of the two bands was polymorphic, showing different allelic forms among nine ginseng cultivars, whereas the other band was usually monomorphic. Sequences derived from the two loci showed a high similarity, including the same primer-binding site, but each locus could be distinguished based on SSR number variations and additional single nucleotide polymorphisms (SNPs) or InDels. A locus-specific marker designed from the SNP site between the paralogous loci produced a single band that also showed clear polymorphism among ginseng cultivars. Conclusion: Our data imply that the recent genome duplication has resulted in two highly similar paralogous regions in the ginseng genome. The two paralogous sequences could be differentiated by large SSR number variations and one or two additional SNPs or InDels in every 100 bp of genic region, which can serve as a reliable identifier for each locus.

핵 및 미토콘드리아 DNA 염기서열을 이용한 국내 Phytophthora 속의 Multi-locus phylogeny 분석 (Multi-locus Phylogeny Analysis of Korean Isolates of Phytophthora Species Based on Sequence of Ribosomal and Mitochondrial DNA)

  • 서문원;송정영;김홍기
    • 한국균학회지
    • /
    • 제38권1호
    • /
    • pp.40-47
    • /
    • 2010
  • Phytophthora 속의 핵(ypt 유전자, rDNA-IGS region) 및 미토콘드리아(Cox 유전자, $\beta$-tubline 유전자, EF1A 유전자) 내에 존재하는 5가지 유전자 영역을 이용하여 국내 Phytophthora 속 14종의 유전적 다양성을 분석하였다. 국내 Phytophthora 속은 외국의 Phytophthora 속과 동일한 clade를 형성하였으나, 외국의 Phytophthora 속과 마찬가지로 본 연구에서도 분자생물학적 분류와 형태학적 분류와는 연관성을 찾기 어려웠다. 기존에 보고된 국내 P. palmivora KACC 40167 균주의 그룹이 국내에서 보고된 분류체계와 일치하지 않아 추후 재검토가 필요하였다. P. cryptogea-P. drechsleri complex group 내 국내 P. cryptogea KACC 40161 균주와 P. drechsleri KACC 40195 균주는 서로 94% 이상의 유사도를 보여 재동정이 필요하였으며, P. parasitica와 P. nicotianae간의 유사도가 99% 이상으로 나타나 이 두 종간에 통일된 종명이 요구된다. 또한 현재 분자계통학상 5그룹으로 구분된 국내 Phytophthora 속을 외국균주들과 비교하여 10개의 그룹으로 새롭게 재분류하였다. 이러한 결과들은 국내 Phytophthora 속의 유전적 다양성 연구를 위해 유용한 자료가 될 것이다.

Analysis of intraspecific genetic diversity in Acidovorax citrulli causing bacterial fruit blotch on cucurbits in Korea

  • Song, Jeong Young;Oo, May Moe;Park, Su Yeon;Seo, Mun Won;Lee, Seong-Chan;Jeon, Nak Beom;Nam, Myeong Hyeon;Lee, Youn Su;Kim, Hong Gi;Oh, Sang-Keun
    • 농업과학연구
    • /
    • 제45권4호
    • /
    • pp.575-582
    • /
    • 2018
  • Bacterial fruit blotch (BFB) caused by Acidovorax citrulli is a devastating disease found in many cucurbits cultivation fields. The genetic diversity for 29 strains of A. citrulli collected from various cucurbits in South Korea was determined by DNA fingerprinting with a pathogenicity test, multi locus analysis, Rep-PCR (repetitive sequence polymerase chain reaction), and URP (universal rice primers) PCR bands. Two distinct groups (Korean Clonal Complex, KCC1 and KCC2) in the population were identified based on group specific genetic variation in the multi locus phylogeny using six conserved loci and showed a very high similarity with DNA sequences for representative foreign groups [the group I (CC1-1 type) and the group II (CC2-5 type)] widely distributed worldwide, respectively. Additionally, in the case of phaC, a new genotype was found within each Korean group. The KCC1 was more heterogeneous compared to the KCC2. The KCC1 recovered mainly from melons and watermelons (ratio of 6 : 3) and 15 of the 20 KCC2 strains recovered from watermelons were dominant in the pathogen population. Accordingly, this study found that two distinct groups of differentiated A. citrulli exist in South Korea, genetically very similar to representative foreign groups, with a new genotype in each group resulting in their genetic diversity.