• Title/Summary/Keyword: multi-level signal

Search Result 250, Processing Time 0.03 seconds

The Analysis about Channel Code Performance of Underwater Channel (수중통신채널에서 고려되는 채널 부호의 성능 분석)

  • Bae, Jong-Tae;Kim, Min-Hyuk;Choi, Suk-Soon;Jung, Ji-Won;Chun, Seung-Yong;Dho, Kyeong-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.286-295
    • /
    • 2008
  • Underwater acoustic communication has multi path error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In this paper, we consider the use of various channel coding schemes such as RS code, convolutional code, cross-layer code and LDPC code in order to compensate the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error, so interleaver has little effect for error correcting. For correcting of error floor by multipath error, it is necessary strong channel codes like LDPC code that is similar to Shannon's limit. And the performance of concatenated codes including RS codes has better performance than using singular channel codes.

PR (1 2 2 1) Signal Decoding for DVD using the Circular Analog Parallel Circuits (순환형 아날로그 병렬 회로망 구조를 이용한 DVD용 PR (1 2 2 1) 신호의 디코딩)

  • Son Hongrak;Kim Hyonjeong;Kim Hyongsuk;Lee Jeongwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.17-26
    • /
    • 2006
  • The analog Viterbi decoder for the PR (1 2 2 1) which is used for BVD read channel is designed with circular analog parallel circuits. Since the inter symbol interference is serious problem in the high density magnetic storage device or DVD, the PRML technology is normally employed for the purpose of minimizing the decoding error. The feature of the PRML technology is with the multi-level coding according to the predetermined combining rule among the neighboring symbols and with the decoding according to the known combining rule. Though the conventional PRML technology is implemented with the digital circuits, the recent trend towards this end is with the utilization of the analog circuits due to the requirements of higher speed and lower power in the DVD read channel. In this study, the Viterbi decoder which is the bottleneck of the PRML implementation is designed with the analog parallel circuit structure. The designed Viterbi decoder for the PR (1 2 2 1) signal shows 3 times faster in the speed and 1/3 times less in the power consumption than thoseoftheconventionaldigitalcounterpart.

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

Characteristics of the SAR Images and Interferometric Phase over Oyster Sea Farming Site (굴 양식장에서의 SAR 영상 및 간섭위상 특성)

  • 김상완;이창욱;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.209-220
    • /
    • 2002
  • We carried out studies on SAR image intensity and interferometric phase over oyster sea farms. Strong backscattering was observed in amplitude images, and that was considered as a radar signal double bouncing from horizontal bars. These sea farming structures are not visible in satellite optical images except IKONOS image, so that it demonstrates the value of radar remote sensing as an effective tool in support of sea farm detection. The intensity of the image is sensitive to system parameters including wavelength, polarization, and look direction, but does not correlate to tide height. We found that the strongest backscattering can be obtained by L-band HH-polarization with a look direction perpendicular to the horizontal bar. We also succeeded in generating 21 coherent JERS-1 SAR interferometric pairs over the oyster farms. The general trend of the fringe rate of the interferometric phases appeared to be governed by altitude of ambiguity. The general trend was modeled by an inverse function and removed to have a residual phase. The residual phase showed a linear relation with the tide height. The results demonstrate for the first time that SAR can possibly be used to estimate sea level. However, the r.m.s. error of a regression line is 11.7 cm, and that is so far too large to make reliable assessments of sea level in practical applications. Further studies is required to improve the accuracy specifically using multi-polarization SAR data.

A Quick-and-dirty Method for Detection of Ground Moving Targets in Single-Channel SAR Single-Look Complex (SLC) Images by Differentiation (미분을 이용한 단일채널 SAR SLC 영상 내 지상 이동물체의 탐지방법)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.185-205
    • /
    • 2014
  • SAR ground moving target indicator (GMTI) has long been an important issue for SAR advanced applications. As spatial resolution of space-borne SAR system has been significantly improved recently, the GMTI becomes a very useful tool. Various GMTI techniques have been developed particularly using multi-channel SAR systems. It is, however, still problematic to detect ground moving targets within single channel SAR images while it is not practical to access high resolution multi-channel space-borne SAR systems. Once a ground moving target is detected, it is possible to retrieve twodimensional velocities of the target from single channel space-borne SAR with an accuracy of about 5 % if moving faster than 3 m/s. This paper presents a quick-and-dirty method for detecting ground moving targets from single channel SAR single-look complex (SLC) images by differentiation. Since the signal powers of derivatives present Doppler centroid and rate, it is very efficient and effective for detection of non-stationary targets. The derivatives correlate well with velocities retrieved by a precise method with a correlation coefficient $R^2$ of 0.62, which is well enough to detect the ground moving targets. While the approach is theoretically straightforward, it is necessary to remove the effects of residual Doppler rate before finalizing the ground moving target candidates. The confidence level of results largely depends on the efficiency and effectiveness of the residual Doppler rate removal method. Application results using TerraSAR-X and truck-mounted corner reflectors validated the efficiency of the method. While the derivatives of moving targets remain easily detectable, the signal energy of stationary corner reflectors was suppressed by about 18.5 dB. It results in an easy detection of ground targets moving faster than 8.8 km/h. The proposed method is applicable to any high resolution single channel SAR systems including KOMPSAT-5.

Construction and Production of Concatameric Human TNF Receptor-Immunoglobulin Fusion Proteins

  • Yim, Su-Bin;Chung, Yong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 2004
  • Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and lymphotoxin-$\alpha$ (LT-$\alpha$, TNF-$\beta$) can initiate and perpetuate human diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and insulin-dependent diabetes mellitus (IDDM). TNFs can be blocked by the use of soluble TNF receptors. However, since monomeric soluble receptors generally exhibit low affinity or function as agonists, the use of monomeric soluble receptors has been limited in the case of cytokines such as TNF-$\alpha$, TNF-$\alpha$, interleukin (IL)-1, IL-4, IL-6, and IL-13, which have adapted to a multi component receptor system. For these reasons, very high-affinity inhibitors were created for the purpose of a TNFs antagonist to bind the TNFR and trigger cellular signal by using the multistep polymerase chain reaction method. First, recombinant simple TNFR-Ig fusion proteins were constructed from the cDNA sequences encoding the extracellular domain of the human p55 TNFR (CD120a) and the human p75 TNFR (CD120b), which were linked to hinge and constant regions of human $IgG_1$ heavy chain, respectively using complementary primers (CP) encoding the complementary sequences. Then, concatameric TNFR-Ig fusion proteins were constructed using recombinant PCR and a complementary primer base of recombinant simple TNFR-Ig fusion proteins. For high level expression of recombinant fusion proteins, Chinese hamster ovary (CHO) cells were used with a retroviral expression system. The transfected cells produced the simple concatameric TNFR-Ig fusion proteins capable of binding TNF and inactivating it. These soluble versions of simple concantameric TNFR-Ig fusion proteins gave rise to multiple forms such as simple dimers and concatameric homodimers. Simple TNFR-1g fusion proteins were shown to have much more reduced TNF inhibitory activity than concatameric TNFR-Ig fusion proteins. Concatameric TNFR-Ig fusion proteins showed higher affinity than simple TNFR-Ig fusion proteins in a receptor inhibitor binding assay (RIBA). Additionally, concatameric TNFR-Ig fusion proteins were shown to have a progressive effect as a TNF inhibitor compared to the simple TNFR-Ig fusion proteins and conventional TNFR-Fc in cytotoxicity assays, and showed the same results for collagen induced arthritis (CIA) in mice in vivo.

A Indoor Management System using Raspberry Pi (라즈베리 파이를 이용한 실내관리 시스템)

  • Jeong, Soo;Lee, Jong Jin;Jung, Won Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • In the era of the Internet of Things, where all physical objects are connected to the Internet, we suggest a remote control system using a Raspberry Pi single-board computer with ZigBee, which can turn an indoor light-emitting diode (LED) and a multiple-tap on and off, and with a smart phone can control the brightness of the LED as well as an electronic door lock. By connecting an infrared (IR) transmitter module to the Raspberry Pi, we can control home appliances, such as an air conditioner, and we can also monitor indoor images, indoor temperatures, and illumination by using a smart phone app. We developed a method of finding out IR transmission codes required for remote-controllable appliances with an AVR micro-controller. We suggest a method to remotely open and shut an office door by novating the door lock. The brightness level of an LED (between 0 and 10) can be controlled through a PWM signal generated by an ATmega88 microcontroller. A mutiple-tap is controlled using an ATmega32, a photo-coupler, and a TRIAC. The signals for measured temperature and illumination are converted from analog to digital by using the ATtiny44A microcontroller transmitting to a Raspberry Pi through SPI communication. Then, we connect a camera to the CSI head of the Raspberry Pi. We can turn on the smart multiple-tap for a certain period of time, or we can schedule the multi-tap to turn on at a specific time. To reduce standby power, people usually pull out a power code from multiple-taps or turn off a switch. Our method helps people do the same thing with a smart phone, if they are away from home.

Geoacoustic Inversion and Source Localization with an L-Shaped Receiver Array (L-자형 선배열을 이용한 지음향학적 인자 역산 및 음원 위치 추정)

  • Kim, Kyung-Seop;Lee, Keun-Hwa;Kim, Seong-Il;Kim, Young-Gyu;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.7
    • /
    • pp.346-355
    • /
    • 2006
  • Acoustic data from a shallow water experiment in the East Sea of Korea (MAPLE IV) is Processed to investigate the Performance of matched-field geo-acoustic inversion and source localization. The receiver array consists of two legs as in an L-shape. one vertical and the other horizontal lying on the seabed. Narrowband multi-tone CW source was towed along a slightly inclined bathymetry track. The matched-field geo-acoustic inversion includes comparisons between three processing techniques. all based on the Bartlett processor as; (1) the coherent processing of the data from the full array, (2) the incoherent Product of each output from both the horizontal and vertical arrays, and (3) the cross correlation between the horizontal and vertical arrays. as well as processing each array leg separately. To verify the inversion results. matched-field source localization for low level source signal components were performed using the same Processors used at the inversion stage.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF