Browse > Article

Construction and Production of Concatameric Human TNF Receptor-Immunoglobulin Fusion Proteins  

Yim, Su-Bin (Department of Microbiology, College of Medicine, Hanyang University, Biomedical Research Institute MedExGen Inc.)
Chung, Yong-Hoon (Department of Microbiology, College of Medicine, Hanyang University, Biomedical Research Institute MedExGen Inc.)
Publication Information
Journal of Microbiology and Biotechnology / v.14, no.1, 2004 , pp. 81-89 More about this Journal
Abstract
Tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and lymphotoxin-$\alpha$ (LT-$\alpha$, TNF-$\beta$) can initiate and perpetuate human diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and insulin-dependent diabetes mellitus (IDDM). TNFs can be blocked by the use of soluble TNF receptors. However, since monomeric soluble receptors generally exhibit low affinity or function as agonists, the use of monomeric soluble receptors has been limited in the case of cytokines such as TNF-$\alpha$, TNF-$\alpha$, interleukin (IL)-1, IL-4, IL-6, and IL-13, which have adapted to a multi component receptor system. For these reasons, very high-affinity inhibitors were created for the purpose of a TNFs antagonist to bind the TNFR and trigger cellular signal by using the multistep polymerase chain reaction method. First, recombinant simple TNFR-Ig fusion proteins were constructed from the cDNA sequences encoding the extracellular domain of the human p55 TNFR (CD120a) and the human p75 TNFR (CD120b), which were linked to hinge and constant regions of human $IgG_1$ heavy chain, respectively using complementary primers (CP) encoding the complementary sequences. Then, concatameric TNFR-Ig fusion proteins were constructed using recombinant PCR and a complementary primer base of recombinant simple TNFR-Ig fusion proteins. For high level expression of recombinant fusion proteins, Chinese hamster ovary (CHO) cells were used with a retroviral expression system. The transfected cells produced the simple concatameric TNFR-Ig fusion proteins capable of binding TNF and inactivating it. These soluble versions of simple concantameric TNFR-Ig fusion proteins gave rise to multiple forms such as simple dimers and concatameric homodimers. Simple TNFR-1g fusion proteins were shown to have much more reduced TNF inhibitory activity than concatameric TNFR-Ig fusion proteins. Concatameric TNFR-Ig fusion proteins showed higher affinity than simple TNFR-Ig fusion proteins in a receptor inhibitor binding assay (RIBA). Additionally, concatameric TNFR-Ig fusion proteins were shown to have a progressive effect as a TNF inhibitor compared to the simple TNFR-Ig fusion proteins and conventional TNFR-Fc in cytotoxicity assays, and showed the same results for collagen induced arthritis (CIA) in mice in vivo.
Keywords
TNF; TNFR1; TNFR2; TNFR-Ig; concatameric TNFR-Ig; arthritis;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Elliott, M. J., R. N. Maini, M. Feldmann, A. Long-Fox, P. Charles, P. Katsikis, F. M. Brennan, J. Walker, H. Bijl, and J. Ghrayeb. 1993. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor-$\alpha$. Arthritis Rheum. 36: 1681-1690
2 Emi, N., T. Friedmann, and J. K. Yee. 1991. Pseudotyped formation of murine leukemia virus with G protein of vesicular stomatitis virus. J. Virol. 65: 1202-1207
3 Kawasaki, E. S. 1990. Amplification of RNA, pp. 21. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.), PCR Protocol. Academic Press, San Diego, U.S.A
4 Kohno, T., M. T. Brewer, S. L. Baker, P. E. Schwartz, M. W. King, K. K. Hale, C. H. Squires, R. C. Thompson, and J. L. Vannice. 1990. A second tumor necrosis factor receptor gene product can shed a naturally occurring tumor necrosis factor inhibitor. Proc. Natl. Acad. Sci. USA 87: 8331-8335
5 Schall, T. J., M. Lewis, K. J. Koller, A. Lee, G. C. Rice, G. H. Wong, T. Gatanaga, G. A. Granger, R. Lentz, H. Raab, et al. 1990. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61: 361-370
6 Dembic, Z., H. Loetscher, U. Gubler, Y. C. Pan, H. W. Lahm, R. Gentz, M. Brockhaus, and W. Lesslauer. 1990. Two human TNF receptors have similar extracellular, but distinct intracellular, domain sequence. Cytokine 2: 231-237
7 Smith, C. A., T. Davis, D. Anderson, L. Solam, M. P. Beckmann, R. Jerzy, S. K. Dower, D. Cosman, and R. G. Goodwin. 1990. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248: 1019-1023
8 Goldenberg, M. M. 1999. Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin. Ther. 21: 75-87   DOI   PUBMED   ScienceOn
9 Richard-Miceli, C. and M. Dougados. 2001. Tumor necrosis factor-a blockers in rheumatoid arthritis: Review of the clinical experience. Biodrugs 15: 251-259
10 Seckinger, P., S. Isaaz, and J. M. Dayer. 1990. Purification and biologic characterization of a specific tumor necrosis factor alpha inhibitor. J. Biol. Chem. 264: 11966-11973
11 Mohler, K. M., D. S. Torrance, C. A. Smith, R. G. Goodwin, K. E. Stremler, V. P. Fung, H. Madani, and M. B. Widmer. 1993. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J. Immunol. 151: 1548-1561
12 Miller, A. D. and C. Buttimore. 1986. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol. Cell. Biol. 6: 2895-2902
13 Van Deventer, S. J. 1999. Anti-TNF antibody treatment of Crohn’s disease. Ann. Rheum. Dis. 58: 1114-1120
14 Jones, E. Y., D. I. Stuart, and N. P. C. Walker. 1989. Structure of tumor necrosis factor. Nature (London). 338: 225-228
15 Loetscher, H., Y. C. Pan, H. W. Lahm, R. Gentz, M. Brockhaus, H. Tabuchi, and W. Lesslauer. 1990. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61: 351-359
16 Van Ostade, X., J. Tavernier, T. Prange, and W. Fiers. 1991. Localization of the active site of human tumour necrosis factor (hTNF) by mutational analysis. EMBO J. 10: 827- 836
17 Sanger, F., S. Nicklen, and A. R. Coulson. 1992. DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 24: 104-108
18 Tracey, K. J., Y. Fong, D. G. Hesse, K. R. Manogue, A. T. Lee, G. C. Kuo, S. F. Lowry, and A. Cerami. 1987. Anticachectin/ TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature (London) 330: 662-664
19 Engelmann, H., D. Aderka, M. Rubinstein, D. Rotman, and D. Wallach. 1989. A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J. Biol. Chem. 264: 11974-11980
20 Miller, A. D. and F. Chen. 1996. Retrovirus packaging cells based on 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry. J. Virol. 70: 5564-5571
21 Mann, R., R. C. Mulligan, and D. Baltimore. 1983. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33: 153-159
22 Morgenstern, J. P. and H. Land. 1990. Advanced mammalian gene transfer: High titer retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18: 3587-3590
23 Eck, M. J. and S. R. Sprang. 1989. The structure of tumor necrosis factor-alpha at 2.6 $\AA$ resolution. Implications for receptor binding. J. Biol. Chem. 264: 17595-17605
24 Terlizzese, M., P. Simoni, and F. Antonetti. 1996. In vitro comparison of inhibiting ability of soluble TNF receptor p75 (TBP II) vs. soluble TNF receptor p55 (TBP I) against TNF- $\alpha$ and TNF- $\beta$. Immunol. Res. 16: 1047-1053
25 Loetscher, H., E. J. Schlaeger, H. W. Lahm, Y. C. Pan, W. Lesslauer, and M. Brockhaus. 1990. Purification and partial amino acid sequence analysis of two distinct tumor necrosis factor receptors from HL60 cells. J. Biol. Chem. 265: 20131-20138
26 Matthews, N. and M. L. Neale. 1987. A practical approach, pp. 221. In M. J. Clemens, A.G. Morris, and A. J. H. Gearing, (eds.), Lymphokines and Interferons. IRL Press, Oxford, U.K
27 Burns, J. C., T. Friedmann, W. Driever, M. Burrascano, and J. K. Yee. 1993. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90: 8033- 8037
28 Joosten, L. A., M. M. Helsen, F. A. van de Loo, and W. B. van den Berg. 1996. Anticytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF-$\alpha$, anti- IL-1 $\alpha$/$\beta$, and IL- 1Ra. Arthritis Rheum. 39: 797-809
29 Beutler, B. 1990. In M. B. Sporn and A. Roberts (eds.), Peptide Growth Factors II. pp. 39-70. Springer-Verlag, Berlin, Germany
30 Beutler, B., I. W. Milsark, and A. Cerami. 1985. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229: 869- 871
31 Wooley, P. H., J. D. Whalen, D. L. Chapman, A. E. Berger, K. A. Richard, D. G. Aspar, and N. D. Staite. 1993. The effect of an interleukin-1 receptor antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum. 36: 1305-1314
32 Capon, D. J., S. M. Chamow, J. Mordenti, S. A. Marster, T. J. Gregory, H. Mitsuya, R. A. Byrn, C. Lucas, F. M. Wurm, J. R. Groopman, and D. H. Smith. 1989. Designing CD4 immunoadhesions for AIDS therapy. Nature (London) 337: 525-531