Browse > Article
http://dx.doi.org/10.7780/kjrs.2014.30.2.3

A Quick-and-dirty Method for Detection of Ground Moving Targets in Single-Channel SAR Single-Look Complex (SLC) Images by Differentiation  

Won, Joong-Sun (Department of Earth System Sciences, Yonsei University)
Publication Information
Korean Journal of Remote Sensing / v.30, no.2, 2014 , pp. 185-205 More about this Journal
Abstract
SAR ground moving target indicator (GMTI) has long been an important issue for SAR advanced applications. As spatial resolution of space-borne SAR system has been significantly improved recently, the GMTI becomes a very useful tool. Various GMTI techniques have been developed particularly using multi-channel SAR systems. It is, however, still problematic to detect ground moving targets within single channel SAR images while it is not practical to access high resolution multi-channel space-borne SAR systems. Once a ground moving target is detected, it is possible to retrieve twodimensional velocities of the target from single channel space-borne SAR with an accuracy of about 5 % if moving faster than 3 m/s. This paper presents a quick-and-dirty method for detecting ground moving targets from single channel SAR single-look complex (SLC) images by differentiation. Since the signal powers of derivatives present Doppler centroid and rate, it is very efficient and effective for detection of non-stationary targets. The derivatives correlate well with velocities retrieved by a precise method with a correlation coefficient $R^2$ of 0.62, which is well enough to detect the ground moving targets. While the approach is theoretically straightforward, it is necessary to remove the effects of residual Doppler rate before finalizing the ground moving target candidates. The confidence level of results largely depends on the efficiency and effectiveness of the residual Doppler rate removal method. Application results using TerraSAR-X and truck-mounted corner reflectors validated the efficiency of the method. While the derivatives of moving targets remain easily detectable, the signal energy of stationary corner reflectors was suppressed by about 18.5 dB. It results in an easy detection of ground targets moving faster than 8.8 km/h. The proposed method is applicable to any high resolution single channel SAR systems including KOMPSAT-5.
Keywords
SAR; Ground moving targets; Differentiation; Single-look complex data; TerraSAR-X;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kersten, P.R., J.V. Topokov, T.L. Ainsworth, M.A. Sletten, and R.W. Jansen, 2010. Estimating surface water speeds with a single-phase center SAR versus an along-track interferometric SAR, IEEE Transactions on Geoscience and Remote Sensing, 48(10): 3638-3646.   DOI   ScienceOn
2 Kirscht, M., 2003, Detection and imaging or arbitrarily moving targets with single-channel SAR. IEE Proceedings - Radar, Sonar and Navigation, 150(1): 7-11.   DOI   ScienceOn
3 Klemm, R., 1998. Space-time adaptive processing, IEE Press, Stevenage, UK.
4 Kreithen, D.E., S.D. Halversen, and G.J. Owirka, 1993. Discriminating targets from clutter, The Lincoln Laboratory Journal, 6(1): 25-52.
5 Linnehan, R., L. Perlovsky, I.C. Mutz, M. Rangaswamy, and J. Schindler, 2004. Theory of synthetic aperture radar imaging of a moving target, Proc. of Sensor Array and Multichannel Signal Processing Workshop, pp. 643-647.
6 Ender, J.H.G., 1998. Experimental results achieved with the airborne multi-channel SAR system AER-II. Proc. of European Synthetic Aperture Radar Conference (EUSAR), Friedrichshafen, Germany, pp. 687-690.
7 Dias, J.M.B., and P.A.C. Marques, 2003. Multiple moving target detection and trajectory estimation using a single SAR sensor, IEEE Transaction on Aerospace and Electronic Systems, 39(2): 604-624.   DOI   ScienceOn
8 Dunn, R.B., T.F. Quatieri, and N. Malyska, 2009. Sinewave parameter estimation using the fanchirp transform, IEEE Workshop on Applications of Audio and Acoustics, 18-21 Oct. 2009, New Paltz, NY, pp. 349-352.
9 Ender, J.H.G., 1996. Detection and estimation of moving target signals by multi-channel SAR, AEU International Journal of Electronic Communication, 50(2): 150-156.
10 Ender, J.H.G., 1999. Space-time processing for multichannel synthetic aperture radar, Electronics and Communication Engineering Journal, 11: 29-38.   DOI
11 Ender, J.H.G., and A. Brenner, 2003. PAMIR - a wideband phased array SAR/MTI system. IEE Proceedings on Radar, Sonar and Navigation, 150(2):165-172.   DOI   ScienceOn
12 Fienup, J.P., 2001. Detecting moving targets in SAR imagery by focusing, IEEE Transaction on Aerospace and Electronic Systems, 37: 749-809.
13 Freeman, A., and A. Currie, 1987. Synthetic aperture radar (SAR) images of moving targets, GEC Journal of Research, 5(2): 106-115.
14 Gierull, C.H., 2002. Statistics of multilook SAR interferograms for CFAR detection of ground moving targets, Proc. of EUSAR, Cologne, Germany, pp. 625-628.
15 Gierull, C.H., and I. Sikaneta, 2003. Raw data based two-aperture SAR ground moving target indication, Proc. of IGARSS'03, Toulouse, France, 21-25 July, vol. 12, pp. 1032-1034.
16 Gierull, C.H., 2006. Ground moving target parameter estimation for two-channel SAR, IEE Proceedings-Radar Sonar Navigation, 153(3): 224-233.   DOI   ScienceOn
17 Gierull, C.H., D. Cerutti-Maori, J. Ender, 2008. Ground moving target indication with tandem satellite constellations, IEEE Geoscience and Remote Sensing Letters, 5(4): 710-714.   DOI   ScienceOn
18 Chen, V.C., and H. Ling, 1999. Joint time-frequency analysis for radar signal and image processing, IEEE Signal Processing Magazine, 16(2): 81-93.   DOI   ScienceOn
19 Chapron, B., F. Collard, and F. Ardhum, 2005. Direct measurements of ocean surface velocity from space: Interpretation and validation, Journal of Geophysical Research, 110: C07008, doi:10.1029/2004JC002809.   DOI   ScienceOn
20 Barbarossa, S., and A. Farina, 1992. Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution, IEE Proceedings F Radar and Signal Processing, 139(1): 89-97.   DOI
21 Ainsworth, T., S. Chubb, R. Fusina, R. Goldstein, R. Jansen, J. Lee, and G. Valenzuela, 1995. InSAR imagery of surface currents, wave fields, and fronts, IEEE Transactions on Geoscience and Remote Sensing, 33(5):1117-1123.   DOI   ScienceOn
22 Bamler, R., 1991. Doppler frequency estimation and the Cramer-Rao bound, IEEE Transactions on Geoscience and Remote Sensing, 29(3): 385-390.   DOI   ScienceOn
23 Barbarossa, S., 1992. Detection and imaging of moving objects with synthetic aperture radar. Part 1. Optimal detection and parameter estimation theory, IEE Proceedings F Radar and Signal Processing, 139(1): 79-88.   DOI
24 Barbarossa, S. and A. Farina, 1994. Space-timefrequency processing of synthetic aperture radar signals, IEEE Transactions on Aerospace and Electronic Systems, 30(2): 341-358.   DOI   ScienceOn
25 Baumgartner, S.V., and G. Krieger, 2012. Fast GMTI algorithm for traffic monitoring based on a priori knowledge, IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4626-4641.   DOI   ScienceOn
26 Breit, H., M. Eineder, J. Holzner, H. Runge, and R. Bamler, 2003. Traffic monitoring using SRTM along-track interferometry, Proc. of IGARSS 2003, Toulouse, France, July, vol. 2, pp. 1187-1189.
27 Budillon, A., V. Pascazio, and G. Schirinzi, 2008. Multichannel along-track interferometric SAR systems: moving targets detection and velocity estimation, International Journal of Navigation and Observation, vol. 2008, article ID 310656, doi:10.1155/2008/310656.   DOI
28 Chen, V.C. and S. Qian, 2002. Time-frequency transforms for radar imaging and signal analysis, Artech House, Inc., USA.
29 Chen, C.C. and H.C. Andrews, 1980. Target motion induced radar imaging, IEEE Transaction on Aerospace and Electronic Systems, 16(1): 2-14.
30 Chen, C.W., 2004. Performance assessment of along-track interferometry for detecting ground moving targets, Proc. of IEEE Radar Conf., Apr. 26-29, 2004, pp. 99-104.
31 Chiu, S., 2003. Clutter effects on ground moving target velocity estimation with SAR along-track interferometry, Proc. of IGARSS 2003, vol. 2, pp. 1314-1319.
32 Chiu, S., 2005. Application of fractional Fourier transform to moving target indication via alongtrack interferometry, EURASIP Journal on Applied Signal Processing, 20: 3293-3303.
33 Chiu, S., and C.E. Livingstone, 2005. A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication, Canadian Journal of Remote Sensing, 31(1): 37-51.   DOI
34 Coe, D.J. and R.G. White, 1995. Moving target detection in SAR imagery: experimental results, Proc. of Radar Conf., Alexandria, VA, USA, 8-11 May, pp. 644-649.
35 Coe, D.J. and White, R.G., 1996. Experimental moving target detection results from a three-beam airborne SAR, AEU International Journal of Electronic Communication, 50(2):157-164.
36 Cohen, L., 1989. Time-frequency distribution - a review, Proc. of IEEE, 77(7): 941-981.   DOI   ScienceOn
37 Cohen, L., 1995. Time-Frequency Analysis, Prentice Hall PTR, New Jersey, USA.
38 Werness, S., Carrara, W., Joyce, L., and D. Franczak , 1990. Moving target imaging algorithm for SAR data. IEEE Transactions on Aerospace and Electronic Systems, 26(1):57?67.   DOI   ScienceOn
39 Cerutti-Moari, D., C.H. Gierull, and J.H.G. Ender, 2010. Experimental verification of SAR-GMTI improvement through antenna switching, IEEE Transactions on Geoscience and Remote Sensing, 48(4): 2066-2075.   DOI   ScienceOn
40 Yadin, E., 1996. A performance evaluation model for a two port interferometer SAR-MTI," Proc. IEEE National Radar Conference, pp. 261-266.
41 Wong, F., and I.G. Cumming, 1996. A combined SAR Doppler centroid estimation scheme based upon signal phase, IEEE Transactions on Geoscience and Remote Sensing, 34(3): 696-707.   DOI   ScienceOn
42 Yang, L., T. Wang, and Z. Bao, 2008. Ground moving target indication using an InSAR system with a hybrid baseline, IEEE Geoscience and Remote Sensing Letters, 5(3): 373-377.   DOI   ScienceOn
43 Soumekh, M., 1997. Moving target detection in foliage using along track monopulse synthetic aperture radar imaging. IEEE Transactions on Image Processing, 6(8): 1148-1163.   DOI   ScienceOn
44 Soumekh, M. and B. Himed, 2002. Moving target detection and imaging using an X-band alongtrack monopulse SAR, IEEE Transactions on Aerospace and Electronic Systems, 8(1): 315-333.
45 Sikaneta, I.C., and J.-Y. Chouinard, 2004. Eigendecomposition of the multi-channel covariance matrix with applications to SAR-GMTI', Signal Processing, 84(9): 1501-1535.   DOI   ScienceOn
46 Sikaneta, I., and C.H. Gierull, 2004. Ground moving target detection for alongtrack interferometric SAR data, Proc. of IEEE Aerospace Conference, Big Sky, Montana, USA, 6-13 March, vol. 4, pp. 2227-2235.
47 Sparr, T., 2005. Moving target motion estimation and focusing in SAR images, Proc. of IEEE Radar Conference, 2005, pp. 290-294.
48 Suchandt, S., H. Runge, H. Breit, U. Steinbrecher, A. Kotenkov, and U. Balss, 2010. Automatic extraction of traffic flows using TerraSAR-X along-track interferometry, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 807-819.   DOI   ScienceOn
49 Sun, H., W. Su, H. Gu, G. Liu, and J. Ni, 2000. Performance analysis of several clutter cancellation techniques by multi-channel SAR, Proc. of EUSAR, Munich, Germany, pp. 549-552.
50 Sun, G., M. Xing, X.-G. Xia, Y. Wu, and Z. Bao, 2013. Robust ground moving-target imaging using deramp-keystone processing, IEEE Transactions on Geoscience and Remote Sensing, 51(2): 966-982.   DOI   ScienceOn
51 Vu, V.T., T.K. Sjogren, M.I. Pettersson, 2008. Moving target detection by focusing for frequency domain algorithms in UWB low frequency SAR, Proc. of IGARSS 2008, 7-11 July, Boston, USA, vol. I, pp. 161-164.
52 Pettersson, M.I., 2001. Extraction of moving ground targets by a bistatic ultrawideband SAR, Proc. on IEE Radar, Sonar and Navigation, 148(1): 35-49.   DOI   ScienceOn
53 Vu, V.T., T.K. Sjogren, M.I. Pettersson, H.-J. Zepernick, and A. Gustavsson, 2007. Experimental results on moving targets detection by focusing in UWB low frequency SAR, IET International Conference on Radar Systems 2007, 15-18 Oct., Edinburgh, UK.
54 Ward, J., 1994. Space-time adaptive processing for airborne radar, Technical Report 1015, Lincoln Laboratory MIT, USA.
55 Raney, R.K., 1991. Considerations for SAR image quantification unique to orbital systems, IEEE Transactions on Geoscience and Remote Sensing, 29(5): 754-760.   DOI   ScienceOn
56 Pettersson, M.I., 2004. Detection of moving targets in wideband SAR, IEEE Transaction on Aerospace and Electronic Systems, 40: 780-796.   DOI   ScienceOn
57 Raney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Transactions on Aerospace and Electronic Systems, 7(3): 499-505.
58 Rodriguez, E. and J.M. Martin, 1992. Theory and design of interferometric synthetic aperture radars, IEE Proc.-F, 139(2): 147-159.   DOI   ScienceOn
59 Romeiser, R., H. Breit, M. Eineder, H. Runge, P. Flament, K. de Jong, and J. Vogelzang, 2005, Current measurements by SAR along-track interferometry from a space shuttle, IEEE Transactions on Geoscience and Remote Sensing, 43(10): 2315-2324.   DOI   ScienceOn
60 Rosen, P., S. Hensley, I. Joughin, F. Li, S. Madsen, E. Rodriguez, and R. Goldstein, 2000. Synthetic aperture radar interferometry, Proc. of the IEEE, 88(3): 333-382.   DOI   ScienceOn
61 Livingstone, C., Sikaneta, I., Gierull, C.H., Chiu, S., Beaudoin,A., Campbell, J., Beaudoin, J., Gong, S. and T. Knight, 2002, An airborne SAR experiment to support RADARSAT-2 GMTI, Canadian J. Remote Sensing, 28(6): 1-20.   DOI
62 Sharma, J., and M.J. Collins, 2004. Simulations of SAR signals from moving vehicles (focussing accelerating ground moving targets), Proc. of EUSAR'04, Ulm, Germany, pp. 841-844.
63 Sharma, J., C.H. Gierull, and M.J. Collins, 2006. The influence of target acceleration on velocity estimation in dual-channel SAR-GMTI, IEEE Transactions on Geoscience and Remote Sensing, 44(1): 134-147.   DOI   ScienceOn
64 Marques, P.A.C., and J.M.B. Dias, 2005. Velocity estimation of fast moving targets using a single SAR sensor, IEEE Transaction on Aerospace and Electronic Systems, 41(1): 75-89.   DOI   ScienceOn
65 Lombardo, P., 1996. DPCA processing for SAR moving targets detection in the presence of internal clutter motion and velocity mismatch. Proc. of SPIE, Taormina, Italy, 2958: 50-61.
66 Madsen, S.N., 1989. Estimating the Doppler centroid of SAR data, IEEE Transaction on Aerospace and Electronic Systems, 25(2): 134-140.   DOI   ScienceOn
67 Moccia, A. and G. Rufino, 2001. Spaceborne alongtrack SAR interferometry: performance analysis and mission scenarios, IEEE Transactions on Aerospace and Electronic Systems, 37(1): 199-213.   DOI   ScienceOn
68 Moreira, J.R. and W. Keydel, 1995. A new MTI-SAR approach using the reflectivity displacement method. IEEE Transactions on Geoscience and Remote Sensing, 33(5): 1238-1244.   DOI   ScienceOn
69 Park, J.-W. and J-S. Won, 2011. An efficient method of Doppler parameter estimation in the timefrequency domain for a moving object from TerraSAR-X data, IEEE Transactions on Geoscience and Remote Sensing, 49(12): 4771-4787, 2011.   DOI   ScienceOn
70 Moreira, A., J. Mittermayer, and R. Scheiber, 1996, Extended chirp scaling algorithm for air- and spaceborne SAR data Processing in Stripmap and ScanSAR imaging modes, IEEE Transactioins on Geoscience and Remote Sensing, 34(5): 1123-1136.   DOI   ScienceOn
71 Pascazio, V., Schirinzi, G., and A. Farina, 2001. Moving target detection by along-track interferometry, Proc. of IGARSS'2001, Sydney, Australia, 7: 3024-3026.
72 Jao, J.K., 2001, Theory of synthetic aperture radar imaging of a moving target, IEEE Transactions on Geoscience and Remote Sensing, 39(9): 1984-1992.   DOI   ScienceOn
73 Graber, H.C., D.R. Thompson, and R.E. Carande, 1996. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar, Journal of Geophysical Resesearch, 101, 25, 813-25, 832.
74 Jahangir, M., and C.P. Moate, 2006. Utilising signal absence in sar imagery for moving target detection, IET Forum on Waveform Diversity and Design in Communications, Radar and Sonar, 22 Nov., Savoy Place, London, UK, pp. 41-46.
75 Kepesi, M., and L. Weruaga, 2006. Adaptive chirpbased time-frequency analysis of speech signals, Speech Communication, 48: 474-492.   DOI   ScienceOn
76 Kersten, P.R., R.W. Janse, K. Luc and T.L. Ainsworth, 2007. Motion analysis in SAR images of unfocused objects using time-frequency methods, IEEE Transactions on Geoscience and Remote Sensing Letters, 4(4): 527-531.   DOI   ScienceOn
77 Weihing, D., S. Hinza, F. Meyer b, A. Laika, and R. Bamler, 2006. Detection of along-track ground moving targets in high resolution spaceborn SAR images, ISPRS Comission VII Mid-term Symp., Remote Sensing: From pixels to processes, Enschede, the Netherlands, 8-11 May, pp. 81-85.
78 Goldstein, R. and Zebker, H., 1987. Interferometric radar measurements of ocean surface currents. Nature, 328(20): 707-709.   DOI
79 Romeiser, R., and D.R. Thompson, 2000. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents, IEEE Transactions on Geoscience and Remote Sensing, 38(1): 446-458.   DOI   ScienceOn
80 Chapman, R.D., C.M. Hawes, and M.E. Nord, 2010. Target motion ambiguities in single-aperture synthetic aperture radar, IEEE Transaction on Aerospace and Electronic Systems, 46(1): 459-468.   DOI   ScienceOn
81 Meyer, F., S. Hinz, A. Laika, S. Suchandt, and R. Bamler, 2006. Performance analysis of space-borne SAR vehicle detection and velocity estimation, Proc. of ISPRS, Born, Germany, 20-22 Sep., vol. XXXVI, part 3, pp. 240-247.