DOI QR코드

DOI QR Code

A Quick-and-dirty Method for Detection of Ground Moving Targets in Single-Channel SAR Single-Look Complex (SLC) Images by Differentiation

미분을 이용한 단일채널 SAR SLC 영상 내 지상 이동물체의 탐지방법

  • 원중선 (연세대학교 지구시스템과학과)
  • Received : 2014.01.28
  • Accepted : 2014.03.13
  • Published : 2014.04.30

Abstract

SAR ground moving target indicator (GMTI) has long been an important issue for SAR advanced applications. As spatial resolution of space-borne SAR system has been significantly improved recently, the GMTI becomes a very useful tool. Various GMTI techniques have been developed particularly using multi-channel SAR systems. It is, however, still problematic to detect ground moving targets within single channel SAR images while it is not practical to access high resolution multi-channel space-borne SAR systems. Once a ground moving target is detected, it is possible to retrieve twodimensional velocities of the target from single channel space-borne SAR with an accuracy of about 5 % if moving faster than 3 m/s. This paper presents a quick-and-dirty method for detecting ground moving targets from single channel SAR single-look complex (SLC) images by differentiation. Since the signal powers of derivatives present Doppler centroid and rate, it is very efficient and effective for detection of non-stationary targets. The derivatives correlate well with velocities retrieved by a precise method with a correlation coefficient $R^2$ of 0.62, which is well enough to detect the ground moving targets. While the approach is theoretically straightforward, it is necessary to remove the effects of residual Doppler rate before finalizing the ground moving target candidates. The confidence level of results largely depends on the efficiency and effectiveness of the residual Doppler rate removal method. Application results using TerraSAR-X and truck-mounted corner reflectors validated the efficiency of the method. While the derivatives of moving targets remain easily detectable, the signal energy of stationary corner reflectors was suppressed by about 18.5 dB. It results in an easy detection of ground targets moving faster than 8.8 km/h. The proposed method is applicable to any high resolution single channel SAR systems including KOMPSAT-5.

SAR를 이용한 지상이동물체탐지(GMTI)는 SAR의 주요 활용 기술 중 하나이다. 최근 위성 탑재 SAR 시스템의 해상도가 높아지면서 지상이동목표물 탐지의 유용성은 더욱 강조되고 있다. 현재까지 다양한 지상이동물체탐지 기법이 개발되었으나 대부분은 다중채널 SAR 시스템을 이용하는 기술에 집중되었다. 그러나, 아직도 단일채널 SAR 영상으로부터 지상 이동물체를 탐지하는 것은 매우 어려운 문제로 남아 있는 반면 다중채널 위성 탑재 SAR 시스템은 아직은 그 활용이 현실적으로 매우 제한적인 상황이다. 일단 지상의 목표물이 탐지되고 이동속도가 3 m/s(약 10.8 km/h) 이상인 경우 그 목표물의 이동속도는 단일채널 SAR 자료라도 오차범위 약 5%의 정밀도로 복원 가능하다. 따라서 단일채널 SAR 자료로부터 지상의 이동물체 자체를 탐지하는 것이 핵심이며, 이 논문에서는 SAR Single-Look Complex(SLC) 영상자료에 미분을 적용하여 쉽고 빠르게 탐지하는 방법을 제시한다. 이 논문에서는 SAR SLC 자료의 미분 값은 도플러 중심주파수를 나타냄을 유도하고, 따라서 미분 값은 지상이동물체 탐지에 매우 효과적임을 설명하고자 한다. 이 논문에서 제시하는 미분 방법의 결과와 정밀한 속도복원 방법의 상관계수 $R^2$ 는 0.62로 나타났으며, 이는 이동물체를 탐지하는 데는 충분함을 지시한다. 이 방법은 매우 단순한 미분으로 도플러 중심주파수 분석에 근거하고 있으나 최종 자료처리에 앞서 도플러 경사도를 제거해야 하며, 적용결과의 효율성과 신뢰도는 이 도플러 경사도 제거 과정에 크게 좌우된다. 지상에 모서리 산란체를 탑재하고 이동속도를 조절한 실험용 차량과 이를 관측한 TerraSAR-X SLC 자료를 이용하여 검증을 실시하였다. 검증결과 지상 이동물체를 매우 쉽게 탐지하면서도 정지된 상태의 강한 산란체는 약 18.5 dB의 신호파워를 줄여 효과적으로 제거 하는 것으로 나타났다. 현재 이 방법은 지상의 이동속도 8.8 km/h 이상인 경우 매우 효과적이며, 아리랑-5호를 비롯한 모든 단일채널 SAR 시스템에 적용 가능하다.

Keywords

References

  1. Ainsworth, T., S. Chubb, R. Fusina, R. Goldstein, R. Jansen, J. Lee, and G. Valenzuela, 1995. InSAR imagery of surface currents, wave fields, and fronts, IEEE Transactions on Geoscience and Remote Sensing, 33(5):1117-1123. https://doi.org/10.1109/36.469475
  2. Bamler, R., 1991. Doppler frequency estimation and the Cramer-Rao bound, IEEE Transactions on Geoscience and Remote Sensing, 29(3): 385-390. https://doi.org/10.1109/36.79429
  3. Barbarossa, S., 1992. Detection and imaging of moving objects with synthetic aperture radar. Part 1. Optimal detection and parameter estimation theory, IEE Proceedings F Radar and Signal Processing, 139(1): 79-88. https://doi.org/10.1049/ip-f-2.1992.0010
  4. Barbarossa, S., and A. Farina, 1992. Detection and imaging of moving objects with synthetic aperture radar. Part 2: Joint time-frequency analysis by Wigner-Ville distribution, IEE Proceedings F Radar and Signal Processing, 139(1): 89-97. https://doi.org/10.1049/ip-f-2.1992.0011
  5. Barbarossa, S. and A. Farina, 1994. Space-timefrequency processing of synthetic aperture radar signals, IEEE Transactions on Aerospace and Electronic Systems, 30(2): 341-358. https://doi.org/10.1109/7.272259
  6. Baumgartner, S.V., and G. Krieger, 2012. Fast GMTI algorithm for traffic monitoring based on a priori knowledge, IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4626-4641. https://doi.org/10.1109/TGRS.2012.2193133
  7. Breit, H., M. Eineder, J. Holzner, H. Runge, and R. Bamler, 2003. Traffic monitoring using SRTM along-track interferometry, Proc. of IGARSS 2003, Toulouse, France, July, vol. 2, pp. 1187-1189.
  8. Budillon, A., V. Pascazio, and G. Schirinzi, 2008. Multichannel along-track interferometric SAR systems: moving targets detection and velocity estimation, International Journal of Navigation and Observation, vol. 2008, article ID 310656, doi:10.1155/2008/310656.
  9. Cerutti-Moari, D., C.H. Gierull, and J.H.G. Ender, 2010. Experimental verification of SAR-GMTI improvement through antenna switching, IEEE Transactions on Geoscience and Remote Sensing, 48(4): 2066-2075. https://doi.org/10.1109/TGRS.2009.2037010
  10. Chapman, R.D., C.M. Hawes, and M.E. Nord, 2010. Target motion ambiguities in single-aperture synthetic aperture radar, IEEE Transaction on Aerospace and Electronic Systems, 46(1): 459-468. https://doi.org/10.1109/TAES.2010.5417175
  11. Chapron, B., F. Collard, and F. Ardhum, 2005. Direct measurements of ocean surface velocity from space: Interpretation and validation, Journal of Geophysical Research, 110: C07008, doi:10.1029/2004JC002809.
  12. Chen, C.C. and H.C. Andrews, 1980. Target motion induced radar imaging, IEEE Transaction on Aerospace and Electronic Systems, 16(1): 2-14.
  13. Chen, C.W., 2004. Performance assessment of along-track interferometry for detecting ground moving targets, Proc. of IEEE Radar Conf., Apr. 26-29, 2004, pp. 99-104.
  14. Chen, V.C., and H. Ling, 1999. Joint time-frequency analysis for radar signal and image processing, IEEE Signal Processing Magazine, 16(2): 81-93. https://doi.org/10.1109/79.752053
  15. Chen, V.C. and S. Qian, 2002. Time-frequency transforms for radar imaging and signal analysis, Artech House, Inc., USA.
  16. Chiu, S., 2003. Clutter effects on ground moving target velocity estimation with SAR along-track interferometry, Proc. of IGARSS 2003, vol. 2, pp. 1314-1319.
  17. Chiu, S., 2005. Application of fractional Fourier transform to moving target indication via alongtrack interferometry, EURASIP Journal on Applied Signal Processing, 20: 3293-3303.
  18. Chiu, S., and C.E. Livingstone, 2005. A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication, Canadian Journal of Remote Sensing, 31(1): 37-51. https://doi.org/10.5589/m04-052
  19. Coe, D.J. and R.G. White, 1995. Moving target detection in SAR imagery: experimental results, Proc. of Radar Conf., Alexandria, VA, USA, 8-11 May, pp. 644-649.
  20. Coe, D.J. and White, R.G., 1996. Experimental moving target detection results from a three-beam airborne SAR, AEU International Journal of Electronic Communication, 50(2):157-164.
  21. Cohen, L., 1989. Time-frequency distribution - a review, Proc. of IEEE, 77(7): 941-981. https://doi.org/10.1109/5.30749
  22. Cohen, L., 1995. Time-Frequency Analysis, Prentice Hall PTR, New Jersey, USA.
  23. Dias, J.M.B., and P.A.C. Marques, 2003. Multiple moving target detection and trajectory estimation using a single SAR sensor, IEEE Transaction on Aerospace and Electronic Systems, 39(2): 604-624. https://doi.org/10.1109/TAES.2003.1207269
  24. Dunn, R.B., T.F. Quatieri, and N. Malyska, 2009. Sinewave parameter estimation using the fanchirp transform, IEEE Workshop on Applications of Audio and Acoustics, 18-21 Oct. 2009, New Paltz, NY, pp. 349-352.
  25. Ender, J.H.G., 1996. Detection and estimation of moving target signals by multi-channel SAR, AEU International Journal of Electronic Communication, 50(2): 150-156.
  26. Ender, J.H.G., 1998. Experimental results achieved with the airborne multi-channel SAR system AER-II. Proc. of European Synthetic Aperture Radar Conference (EUSAR), Friedrichshafen, Germany, pp. 687-690.
  27. Ender, J.H.G., 1999. Space-time processing for multichannel synthetic aperture radar, Electronics and Communication Engineering Journal, 11: 29-38. https://doi.org/10.1049/ecej:19990106
  28. Ender, J.H.G., and A. Brenner, 2003. PAMIR - a wideband phased array SAR/MTI system. IEE Proceedings on Radar, Sonar and Navigation, 150(2):165-172. https://doi.org/10.1049/ip-rsn:20030445
  29. Fienup, J.P., 2001. Detecting moving targets in SAR imagery by focusing, IEEE Transaction on Aerospace and Electronic Systems, 37: 749-809.
  30. Freeman, A., and A. Currie, 1987. Synthetic aperture radar (SAR) images of moving targets, GEC Journal of Research, 5(2): 106-115.
  31. Gierull, C.H., 2002. Statistics of multilook SAR interferograms for CFAR detection of ground moving targets, Proc. of EUSAR, Cologne, Germany, pp. 625-628.
  32. Gierull, C.H., and I. Sikaneta, 2003. Raw data based two-aperture SAR ground moving target indication, Proc. of IGARSS'03, Toulouse, France, 21-25 July, vol. 12, pp. 1032-1034.
  33. Gierull, C.H., 2006. Ground moving target parameter estimation for two-channel SAR, IEE Proceedings-Radar Sonar Navigation, 153(3): 224-233. https://doi.org/10.1049/ip-rsn:20045094
  34. Gierull, C.H., D. Cerutti-Maori, J. Ender, 2008. Ground moving target indication with tandem satellite constellations, IEEE Geoscience and Remote Sensing Letters, 5(4): 710-714. https://doi.org/10.1109/LGRS.2008.2004360
  35. Goldstein, R. and Zebker, H., 1987. Interferometric radar measurements of ocean surface currents. Nature, 328(20): 707-709. https://doi.org/10.1038/328707a0
  36. Graber, H.C., D.R. Thompson, and R.E. Carande, 1996. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar, Journal of Geophysical Resesearch, 101, 25, 813-25, 832.
  37. Jahangir, M., and C.P. Moate, 2006. Utilising signal absence in sar imagery for moving target detection, IET Forum on Waveform Diversity and Design in Communications, Radar and Sonar, 22 Nov., Savoy Place, London, UK, pp. 41-46.
  38. Jao, J.K., 2001, Theory of synthetic aperture radar imaging of a moving target, IEEE Transactions on Geoscience and Remote Sensing, 39(9): 1984-1992. https://doi.org/10.1109/36.951089
  39. Kepesi, M., and L. Weruaga, 2006. Adaptive chirpbased time-frequency analysis of speech signals, Speech Communication, 48: 474-492. https://doi.org/10.1016/j.specom.2005.08.004
  40. Kersten, P.R., R.W. Janse, K. Luc and T.L. Ainsworth, 2007. Motion analysis in SAR images of unfocused objects using time-frequency methods, IEEE Transactions on Geoscience and Remote Sensing Letters, 4(4): 527-531. https://doi.org/10.1109/LGRS.2007.896318
  41. Kersten, P.R., J.V. Topokov, T.L. Ainsworth, M.A. Sletten, and R.W. Jansen, 2010. Estimating surface water speeds with a single-phase center SAR versus an along-track interferometric SAR, IEEE Transactions on Geoscience and Remote Sensing, 48(10): 3638-3646. https://doi.org/10.1109/TGRS.2010.2048571
  42. Kirscht, M., 2003, Detection and imaging or arbitrarily moving targets with single-channel SAR. IEE Proceedings - Radar, Sonar and Navigation, 150(1): 7-11. https://doi.org/10.1049/ip-rsn:20030076
  43. Klemm, R., 1998. Space-time adaptive processing, IEE Press, Stevenage, UK.
  44. Kreithen, D.E., S.D. Halversen, and G.J. Owirka, 1993. Discriminating targets from clutter, The Lincoln Laboratory Journal, 6(1): 25-52.
  45. Linnehan, R., L. Perlovsky, I.C. Mutz, M. Rangaswamy, and J. Schindler, 2004. Theory of synthetic aperture radar imaging of a moving target, Proc. of Sensor Array and Multichannel Signal Processing Workshop, pp. 643-647.
  46. Livingstone, C., Sikaneta, I., Gierull, C.H., Chiu, S., Beaudoin,A., Campbell, J., Beaudoin, J., Gong, S. and T. Knight, 2002, An airborne SAR experiment to support RADARSAT-2 GMTI, Canadian J. Remote Sensing, 28(6): 1-20. https://doi.org/10.5589/m02-002
  47. Lombardo, P., 1996. DPCA processing for SAR moving targets detection in the presence of internal clutter motion and velocity mismatch. Proc. of SPIE, Taormina, Italy, 2958: 50-61.
  48. Madsen, S.N., 1989. Estimating the Doppler centroid of SAR data, IEEE Transaction on Aerospace and Electronic Systems, 25(2): 134-140. https://doi.org/10.1109/7.18675
  49. Marques, P.A.C., and J.M.B. Dias, 2005. Velocity estimation of fast moving targets using a single SAR sensor, IEEE Transaction on Aerospace and Electronic Systems, 41(1): 75-89. https://doi.org/10.1109/TAES.2005.1413748
  50. Meyer, F., S. Hinz, A. Laika, S. Suchandt, and R. Bamler, 2006. Performance analysis of space-borne SAR vehicle detection and velocity estimation, Proc. of ISPRS, Born, Germany, 20-22 Sep., vol. XXXVI, part 3, pp. 240-247.
  51. Moccia, A. and G. Rufino, 2001. Spaceborne alongtrack SAR interferometry: performance analysis and mission scenarios, IEEE Transactions on Aerospace and Electronic Systems, 37(1): 199-213. https://doi.org/10.1109/7.913679
  52. Moreira, J.R. and W. Keydel, 1995. A new MTI-SAR approach using the reflectivity displacement method. IEEE Transactions on Geoscience and Remote Sensing, 33(5): 1238-1244. https://doi.org/10.1109/36.469488
  53. Moreira, A., J. Mittermayer, and R. Scheiber, 1996, Extended chirp scaling algorithm for air- and spaceborne SAR data Processing in Stripmap and ScanSAR imaging modes, IEEE Transactioins on Geoscience and Remote Sensing, 34(5): 1123-1136. https://doi.org/10.1109/36.536528
  54. Park, J.-W. and J-S. Won, 2011. An efficient method of Doppler parameter estimation in the timefrequency domain for a moving object from TerraSAR-X data, IEEE Transactions on Geoscience and Remote Sensing, 49(12): 4771-4787, 2011. https://doi.org/10.1109/TGRS.2011.2162631
  55. Pascazio, V., Schirinzi, G., and A. Farina, 2001. Moving target detection by along-track interferometry, Proc. of IGARSS'2001, Sydney, Australia, 7: 3024-3026.
  56. Pettersson, M.I., 2001. Extraction of moving ground targets by a bistatic ultrawideband SAR, Proc. on IEE Radar, Sonar and Navigation, 148(1): 35-49. https://doi.org/10.1049/ip-rsn:20010110
  57. Pettersson, M.I., 2004. Detection of moving targets in wideband SAR, IEEE Transaction on Aerospace and Electronic Systems, 40: 780-796. https://doi.org/10.1109/TAES.2004.1337454
  58. Raney, R.K., 1971. Synthetic aperture imaging radar and moving targets. IEEE Transactions on Aerospace and Electronic Systems, 7(3): 499-505.
  59. Raney, R.K., 1991. Considerations for SAR image quantification unique to orbital systems, IEEE Transactions on Geoscience and Remote Sensing, 29(5): 754-760. https://doi.org/10.1109/36.83990
  60. Rodriguez, E. and J.M. Martin, 1992. Theory and design of interferometric synthetic aperture radars, IEE Proc.-F, 139(2): 147-159. https://doi.org/10.1049/ip-d.1992.0021
  61. Romeiser, R., and D.R. Thompson, 2000. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents, IEEE Transactions on Geoscience and Remote Sensing, 38(1): 446-458. https://doi.org/10.1109/36.823940
  62. Romeiser, R., H. Breit, M. Eineder, H. Runge, P. Flament, K. de Jong, and J. Vogelzang, 2005, Current measurements by SAR along-track interferometry from a space shuttle, IEEE Transactions on Geoscience and Remote Sensing, 43(10): 2315-2324. https://doi.org/10.1109/TGRS.2005.856116
  63. Rosen, P., S. Hensley, I. Joughin, F. Li, S. Madsen, E. Rodriguez, and R. Goldstein, 2000. Synthetic aperture radar interferometry, Proc. of the IEEE, 88(3): 333-382. https://doi.org/10.1109/5.838084
  64. Sharma, J., and M.J. Collins, 2004. Simulations of SAR signals from moving vehicles (focussing accelerating ground moving targets), Proc. of EUSAR'04, Ulm, Germany, pp. 841-844.
  65. Sharma, J., C.H. Gierull, and M.J. Collins, 2006. The influence of target acceleration on velocity estimation in dual-channel SAR-GMTI, IEEE Transactions on Geoscience and Remote Sensing, 44(1): 134-147. https://doi.org/10.1109/TGRS.2005.859343
  66. Sikaneta, I.C., and J.-Y. Chouinard, 2004. Eigendecomposition of the multi-channel covariance matrix with applications to SAR-GMTI', Signal Processing, 84(9): 1501-1535. https://doi.org/10.1016/j.sigpro.2004.05.028
  67. Sikaneta, I., and C.H. Gierull, 2004. Ground moving target detection for alongtrack interferometric SAR data, Proc. of IEEE Aerospace Conference, Big Sky, Montana, USA, 6-13 March, vol. 4, pp. 2227-2235.
  68. Soumekh, M., 1997. Moving target detection in foliage using along track monopulse synthetic aperture radar imaging. IEEE Transactions on Image Processing, 6(8): 1148-1163. https://doi.org/10.1109/83.605412
  69. Soumekh, M. and B. Himed, 2002. Moving target detection and imaging using an X-band alongtrack monopulse SAR, IEEE Transactions on Aerospace and Electronic Systems, 8(1): 315-333.
  70. Sparr, T., 2005. Moving target motion estimation and focusing in SAR images, Proc. of IEEE Radar Conference, 2005, pp. 290-294.
  71. Suchandt, S., H. Runge, H. Breit, U. Steinbrecher, A. Kotenkov, and U. Balss, 2010. Automatic extraction of traffic flows using TerraSAR-X along-track interferometry, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 807-819. https://doi.org/10.1109/TGRS.2009.2037919
  72. Sun, H., W. Su, H. Gu, G. Liu, and J. Ni, 2000. Performance analysis of several clutter cancellation techniques by multi-channel SAR, Proc. of EUSAR, Munich, Germany, pp. 549-552.
  73. Sun, G., M. Xing, X.-G. Xia, Y. Wu, and Z. Bao, 2013. Robust ground moving-target imaging using deramp-keystone processing, IEEE Transactions on Geoscience and Remote Sensing, 51(2): 966-982. https://doi.org/10.1109/TGRS.2012.2204889
  74. Vu, V.T., T.K. Sjogren, M.I. Pettersson, 2008. Moving target detection by focusing for frequency domain algorithms in UWB low frequency SAR, Proc. of IGARSS 2008, 7-11 July, Boston, USA, vol. I, pp. 161-164.
  75. Vu, V.T., T.K. Sjogren, M.I. Pettersson, H.-J. Zepernick, and A. Gustavsson, 2007. Experimental results on moving targets detection by focusing in UWB low frequency SAR, IET International Conference on Radar Systems 2007, 15-18 Oct., Edinburgh, UK.
  76. Ward, J., 1994. Space-time adaptive processing for airborne radar, Technical Report 1015, Lincoln Laboratory MIT, USA.
  77. Weihing, D., S. Hinza, F. Meyer b, A. Laika, and R. Bamler, 2006. Detection of along-track ground moving targets in high resolution spaceborn SAR images, ISPRS Comission VII Mid-term Symp., Remote Sensing: From pixels to processes, Enschede, the Netherlands, 8-11 May, pp. 81-85.
  78. Werness, S., Carrara, W., Joyce, L., and D. Franczak , 1990. Moving target imaging algorithm for SAR data. IEEE Transactions on Aerospace and Electronic Systems, 26(1):57?67. https://doi.org/10.1109/7.53413
  79. Wong, F., and I.G. Cumming, 1996. A combined SAR Doppler centroid estimation scheme based upon signal phase, IEEE Transactions on Geoscience and Remote Sensing, 34(3): 696-707. https://doi.org/10.1109/36.499749
  80. Yadin, E., 1996. A performance evaluation model for a two port interferometer SAR-MTI," Proc. IEEE National Radar Conference, pp. 261-266.
  81. Yang, L., T. Wang, and Z. Bao, 2008. Ground moving target indication using an InSAR system with a hybrid baseline, IEEE Geoscience and Remote Sensing Letters, 5(3): 373-377. https://doi.org/10.1109/LGRS.2008.916067