• Title/Summary/Keyword: multi-layer material

Search Result 544, Processing Time 0.029 seconds

Improvement of Permeation of applied Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET) (고분자 기판위의 다층 보호막의 성능 평가)

  • Kim, Jong-Hwan;Han, Jin-Woo;Kang, Hee-Jin;Kim, Jong-Yeon;Moon, Hyun-Chan;Choi, Sung-Ho;Park, Kwang-Bum;Kim, Tae-Ha;Kim, Hwi-Woon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.60-61
    • /
    • 2006
  • In this paper, the inorganic-organic thin film encapsulation layer was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter and Spin-Coater system, the various kinds of inorganic and organic thin-films were deposited onto the Ethylene Terephthalate(PET) and their interface properties between organic and inorganic layer were investigated. Results indicates that the SiON/PI/SiON/PI/PET barrier coatings have high potential for flexible organic light-emitting diode(OLEO) applications.

  • PDF

Properties of CoCrTa Thin Film Introduce Two Step methode and Amorphous Si Under Layer for Perpendicular Magnetic Recording Media (Two Step방식과 아몰퍼스 Si 하지층 도입에 따른 수직자기기록 매체용 CoCrTa 박막의 특성 평가)

  • Park, Won-Hyo;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.550-552
    • /
    • 2003
  • We prepared $Co_{77}Cr_{20}Ta_3$ Magnetic layer for perpendicular magnetic recording media with introduce Two-step methode and Amorphous Si Underlayer on slide glass substrate. The thickness of magnetic layer were 100nm, and Underlayer were varied from 5 to 100 nm. The multi layer Properties of crystal structure were examined with XRD. Prepared thin films showed improvement of dispersion angle of c-axis orientation ${\Delta}{\theta}_{50}$ caused by inserting Buffer-layer and amorphous Si underlayer.

  • PDF

Analysisi of Multi-Layer P.C.B. Manufacturing Process by Simulation (시뮬레이션을 이용한 다층 P.C.B. 생산공정의 운영분석)

  • 김만식
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 1992
  • The capacity of the drilling process in Multi-Layer PCB fabrication can be affected by various process parameters determining material flows in the unit operations. The ratio of mass-lamination to pin lamination and the number of stacks as the most critical paramaters, among them, were chosen on the basis of exhaustive field evaluation to study their effects on the capacity of the process. The best alternative condition for maximum capacity of the process was selected by simulation of process.

  • PDF

Effects of CuO on Low-temperature Sintering Characteristics of PSN-PZT System Ceramics (CuO가 PSN-PZT세라믹스의 저온소결 특성에 미치는 영향)

  • 류주현;우원희;오동언;정영호;정광현;정문영;정회승
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1200-1204
    • /
    • 2003
  • In this study, in order to develop the low temperature sintering ceramics for multi-layer piezoelectric transformer, PSN-PZT system ceramics were manufactured as a function of CuO addition and their dielectric and piezoelectric characteristics were Investigated. CuO addition facilitated densification at low temperature due to the effect of Cu$_2$O-PbO liquid phase. Through the X-ray diffraction pattern study, absence of second phase unwanted was confirmed. Among the specimen to which CuO was added, the 0.6wt% CuO added specimen sintered at 900$^{\circ}C$ and 920$^{\circ}C$ showed the most excellent mechanical quality factor and electromechanical coupling factor, respectively. Besides the densification accelerator, CuO acted as a accepter and increased mechanical quality. Compared with the specimen with no addition sintered at 1150$^{\circ}C$ , the 0.6wt% CuO added specimen sintered at 920$^{\circ}C$ showed the appropriate dielectric and piezoelectric characteristics for multi-layer piezoelectric transformer.

Programming Characteristics of the Multi-bit Devices Based on SONOS Structure (SONOS 구조를 갖는 멀티 비트 소자의 프로그래밍 특성)

  • 김주연
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.9
    • /
    • pp.771-774
    • /
    • 2003
  • In this paper, the programming characteristics of the multi-bit devices based on SONOS structure are investigated. Our devices have been fabricated by 0.35 $\mu\textrm{m}$ complementary metal-oxide-semiconductor (CMOS) process with LOCOS isolation. In order to achieve the multi-bit operation per cell, charges must be locally frapped in the nitride layer above the channel near the source-drain junction. Programming method is selected by Channel Hot Electron (CUE) injection which is available for localized trap in nitride film. To demonstrate CHE injection, substrate current (Isub) and one-shot programming curve are investigated. The multi-bit operation which stores two-bit per cell is investigated. Also, Hot Hole(HH) injection for fast erasing is used. The fabricated SONOS devices have ultra-thinner gate dielectrics and then have lower programming voltage, simpler process and better scalability compared to any other multi-bit storage Flash memory. Our programming characteristics are shown to be the most promising for the multi-bit flash memory.

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes

  • Choe Youngson;Park Si Young;Park Dae Won;Kim Wonho
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2006
  • Vacuum deposited copper phthalocyanine (CuPc) was placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in a multi-layered, organic, light-emitting diode (OLEOs). The well-stacked CuPc layer increased the stability and efficiency of the devices. Thermal annealing after CuPc deposition and magnetic field treatment during CuPc deposition were performed to obtain a stacked-CuPc layer; the former increased the stacking density of the CuPc molecules and the alignment of the CuPc film. Thermal annealing at about 100$^{circ}C$ increased the current flow through the CuPc layer by over 25$\%$. Surface roughness decreased from 4.12 to 3.65 nm and spikes were lowered at the film surface as well. However, magnetic field treatment during deposition was less effective than thermal treatment. Eventually, a higher luminescence at a given voltage was obtained when a thermally-annealed CuPc layer was placed in the present, multi-layered, ITO/CuPc/NPD/Alq3/LiF/AI devices. Thermal annealing at about 100$^{circ}C$ for 3 h produced the most efficient, multi-layered EL devices in the present study.

A Study on the Coated Characteristics of Ceramic Tools (세라믹공구 재료의 피복특성에 관한 연구)

  • Lee, Myeong-Je;Im, Hong-Seop;Yu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.900-906
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc. Ceramic tools are likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ceramic tools are suitable for continuous in turning, not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

Design Optimization of Thermo-Elastic Structure (열탄성 구조물의 최적설계)

  • 조희근;박영원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.381-384
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF

Back Analysis Method for Material Properties of Multi-layers Ground Considering Multiple Unknown Variables (다중 미지변수를 고려한 다층지반 역해석)

  • Kim, Se-Jin;Kim, Moon-Kyum;Won, Jong-Hwa;Kim, Jung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.93-100
    • /
    • 2009
  • A core procedure of the direct search method used in this study is optimizing a difference between objective function and real displacement and correcting unknown variables. Because the research procedure comes from back-analyzing of the unknown variable of each layer, back-analyzing results need an additional optimization to minimize interferential effects of unknown variables. Therefore, the direct search method Is used to obtain optimized solutions without a partial differentiation of an objective function. The object of this research is developing the back analysis technique for multi-unknown variables by modeling the soil including underground structure Into upper and lower layer. In order to minimize interferent errors, repeated back analysis is performed and applicability on the real tunnel is examined. Consequently, the multi-layer analysis model is more precise in describing the real behavior of underground structure. It shows the validity of back analysis far multi-layer model which is the understructure placed on multi-layer boundaries.