• Title/Summary/Keyword: multi-dimensional query

Search Result 74, Processing Time 0.023 seconds

A Subsequence Matching Technique that Supports Time Warping Efficiently (타임 워핑을 지원하는 효율적인 서브시퀀스 매칭 기법)

  • Park, Sang-Hyun;Kim, Sang-Wook;Cho, June-Suh;Lee, Hoen-Gil
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.167-179
    • /
    • 2001
  • This paper discusses an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, we suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multi-dimensional index using a feature vector as indexing attributes. For query precessing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verily the superiority of our method, we perform extensive experiments. The results reseal that our method achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

  • PDF

An Efficient Grid Method for Continuous Skyline Computation over Dynamic Data Set

  • Li, He;Jang, Su-Min;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Skyline queries are an important new search capability for multi-dimensional databases. Most of the previous works have focused on processing skyline queries over static data set. However, most of the real applications deal with the dynamic data set. Since dynamic data set constantly changes as time passes, the continuous skyline computation over dynamic data set becomes ever more complicated. In this paper, we propose a multiple layer grids method for continuous skyline computation (MLGCS) that maintains multiple layer grids to manage the dynamic data set. The proposed method divides the work space into multiple layer grids and creates the skyline influence region in the grid of each layer. In the continuous environment, the continuous skyline queries are only handled when the updating data points are in the skyline influence region of each layer grid. Experiments based on various data distributions show that our proposed method outperforms the existing methods.

A Dynamic Locality Sensitive Hashing Algorithm for Efficient Security Applications

  • Mohammad Y. Khanafseh;Ola M. Surakhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.79-88
    • /
    • 2024
  • The information retrieval domain deals with the retrieval of unstructured data such as text documents. Searching documents is a main component of the modern information retrieval system. Locality Sensitive Hashing (LSH) is one of the most popular methods used in searching for documents in a high-dimensional space. The main benefit of LSH is its theoretical guarantee of query accuracy in a multi-dimensional space. More enhancement can be achieved to LSH by adding a bit to its steps. In this paper, a new Dynamic Locality Sensitive Hashing (DLSH) algorithm is proposed as an improved version of the LSH algorithm, which relies on employing the hierarchal selection of LSH parameters (number of bands, number of shingles, and number of permutation lists) based on the similarity achieved by the algorithm to optimize searching accuracy and increasing its score. Using several tampered file structures, the technique was applied, and the performance is evaluated. In some circumstances, the accuracy of matching with DLSH exceeds 95% with the optimal parameter value selected for the number of bands, the number of shingles, and the number of permutations lists of the DLSH algorithm. The result makes DLSH algorithm suitable to be applied in many critical applications that depend on accurate searching such as forensics technology.

Parallel Range Query processing on R-tree with Graphics Processing Units (GPU를 이용한 R-tree에서의 범위 질의의 병렬 처리)

  • Yu, Bo-Seon;Kim, Hyun-Duk;Choi, Won-Ik;Kwon, Dong-Seop
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.5
    • /
    • pp.669-680
    • /
    • 2011
  • R-trees are widely used in various areas such as geographical information systems, CAD systems and spatial databases in order to efficiently index multi-dimensional data. As data sets used in these areas grow in size and complexity, however, range query operations on R-tree are needed to be further faster to meet the area-specific constraints. To address this problem, there have been various research efforts to develop strategies for acceleration query processing on R-tree by using the buffer mechanism or parallelizing the query processing on R-tree through multiple disks and processors. As a part of the strategies, approaches which parallelize query processing on R-tree through Graphics Processor Units(GPUs) have been explored. The use of GPUs may guarantee improved performances resulting from faster calculations and reduced disk accesses but may cause additional overhead costs caused by high memory access latencies and low data exchange rate between GPUs and the CPU. In this paper, to address the overhead problems and to adapt GPUs efficiently, we propose a novel approach which uses a GPU as a buffer to parallelize query processing on R-tree. The use of buffer algorithm can give improved performance by reducing the number of disk access and maximizing coalesced memory access resulting in minimizing GPU memory access latencies. Through the extensive performance studies, we observed that the proposed approach achieved up to 5 times higher query performance than the original CPU-based R-trees.

Cloud P2P OLAP: Query Processing Method and Index structure for Peer-to-Peer OLAP on Cloud Computing (Cloud P2P OLAP: 클라우드 컴퓨팅 환경에서의 Peer-to-Peer OLAP 질의처리기법 및 인덱스 구조)

  • Joo, Kil-Hong;Kim, Hun-Dong;Lee, Won-Suk
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.157-172
    • /
    • 2011
  • The latest active studies on distributed OLAP to adopt a distributed environment are mainly focused on DHT P2P OLAP and Grid OLAP. However, these approaches have its weak points, the P2P OLAP has limitations to multidimensional range queries in the cloud computing environment due to the nature of structured P2P. On the other hand, the Grid OLAP has no regard for adjacency and time series. It focused on its own sub set lookup algorithm. To overcome the above limits, this paper proposes an efficient central managed P2P approach for a cloud computing environment. When a multi-level hybrid P2P method is combined with an index load distribution scheme, the performance of a multi-dimensional range query is enhanced. The proposed scheme makes the OLAP query results of a user to be able to reused by other users' volatile cube search. For this purpose, this paper examines the combination of an aggregation cube hierarchy tree, a quad-tree, and an interval-tree as an efficient index structure. As a result, the proposed cloud P2P OLAP scheme can manage the adjacency and time series factor of an OLAP query. The performance of the proposed scheme is analyzed by a series of experiments to identify its various characteristics.

An Efficient MapReduce-based Skyline Query Processing Method with Two-level Grid Blocks (2-계층 그리드 블록을 이용한 효과적인 맵리듀스 기반 스카이라인 질의 처리 기법)

  • Ryu, Hyeongcheol;Jung, Sungwon
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.613-620
    • /
    • 2017
  • Skyline queries are used extensively to solve various problems, such as in decision-making, because they find data that meet a variety of user criteria. Recent research has focused on skyline queries by using the MapReduce framework for large database processing, mainly in terms of applying existing index structures to MapReduce. In a skyline, data closer to the origin dominate more area. However, the existing index structure does not reflect such characteristics of the skyline. In this paper, we propose a grid-block structure that groups grid cells to match the characteristics of a skyline, and a two-level grid-block structure that can be used even when there are no data close to the origin. We also propose an efficient skyline-query algorithm that uses the two-level grid-block structure.

Skyline Query Processing Method based on Data Centric Storage (데이터 중심 저장구조에 기반한 스카이라인 질의 처리 기법)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Song, Seok-Il;Yoo, Jae-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.3-7
    • /
    • 2009
  • Data centric storages for sensor networks have been proposed to efficiently process multi-dimensional range queries as well as exact matches. Usually, a sensor network does not process only one type of the query but supports various types of queries such as range queries, exact matches and skyline queries. Therefore, a sensor network based on a data centric storage for range queries and exact matches should process skyline queries efficiently. However, existing algorithms for skyline queries have not considered the features of data centric storages. Some of the data centric storages store similar data in sensor nodes that are placed on geographically similar locations. Consequently, all data are ordered in a sensor network. In this paper, we propose a new skyline query processing algorithm that exploits the above features of data centric storages.

  • PDF

Multiple Continuous Skyline Query Processing Over Data Streams (다중 연속 스카이라인 질의의 효율적인 처리 기법)

  • Lee, Yu-Won;Lee, Ki-Yong;Kim, Myoung-Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.165-179
    • /
    • 2010
  • Recently, the processing of data streams such as stock quotes, buy-sell orders, and billing records becomes more important in e-Business environments. Especially, the use of skyline queries over data streams is rapidly increasing to support multiple criteria decision making. Given a set of multi-dimensional tuples, a skyline query retrieves a set of tuples which are not dominated by other tuples. Although there has been much work on processing skyline queries over static datasets, there has been relatively less work on processing multiple skyline queries over data streams. In this paper, we propose an efficient method for processing multiple continuous skyline queries over data streams. The proposed method efficiently identifies which tuple is a skyline tuple of which query, resulting in a lower cost of processing multiple skyline queries. Through performance evaluation, we show the performance advantage of the proposed method.

The Approximate Query Answering Method in Multi-dimensional Data Cube (다차원 데이터큐브의 근사 질의응답 기법)

  • Lee, Sun-Young;Kim, Yeong-Ju;Bae, Woo-Sik;Lee, Jong-Yun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.445-448
    • /
    • 2009
  • DSS 응용들의 대용량 집계 데이터 집중 시스템에서는 효율적이고 즉각적인 의사결정 지원을 위한 근사 질의응답의 연구가 필요하다. 따라서 본 연구에서는 FCM 클러스터링 기법과 ANFIS을 이용한 기법을 제안한다. 제안된 기법은 다차원 데이터 큐브의 데이터 특성을 가지며 질의에 대한 근사적인 응답을 제공할 수 있는 모델을 생성한다. 제안된 기법을 통해 학습된 모델은 기존의 기법보다 근사 질의응답의 정확성이 향상되었음을 비교 실험을 통하여 확인한다. 따라서 제안된 기법은 기존의 기법보다 저장 공간과 시간을 줄일 수 있으며 또한 근사 응답의 정확도를 향상시킬 수 있다.

  • PDF

Multi dimensional index technique for continuous Query of logistics data (물류 데이터의 연속 질의 처리를 위한 다차원 색인 기법)

  • Chu, Byung-Jo;Hong, Bong-Hee;Kim, Gi-Hong
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.82-88
    • /
    • 2008
  • EPCglobal은 기업 간의 물류 활동 촉진과 글로벌 유통물류 시스템 구축을 위하여 EPCglobal Architecture Framework을 제시 하였다. EPCglobal Architecture Framework의 한 구성요소인 EPCIS(Electronic Product Code Information Services)는 EPC 기반 물류 관련 정보에 대한 저장 및 검색 서비스를 제공한다. EPCIS는 단발성 질의(poll)와 연속 질의(subscribe) 검색 서비스를 제공한다. EPCIS의 연속 질의는 시스템 자동화 및 재고 관리, 공급망 관리를 위해 다양한 응용에서 활용이 가능하다. 일반적으로 연속 질의의 성능을 향상시키기 위해서는 질의 색인을 사용한다. 그러나 EPCIS는 13차원의 도메인과 모든 데이터 필드가 필수 조건이 아니라는 것으로 인해, 차원의 저주 및 무한 영역 질의 문제를 발생 시킨다. 본 논문에서는 EPCIS의 물류 데이터의 연속 질의 처리를 위한 다차원 색인 기법을 제안한다. 13차원의 도메인을 여러 개의 질의 색인으로 구성하고, 등록된 질의 및 입력되는 데이터에 의해 변경되는 동적 질의 실행 계획을 제안함으로써, 차원의 저주와 무한 영역 질의의 문제를 해결하고, EPCIS에서 다수의 연속 질의 등록 시 효율적으로 처리가 가능하도록 한다.

  • PDF