
IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024

79

Manuscript received May 5, 2024
Manuscript revised May 20, 2024
https://doi.org/10.22937/IJCSNS.2024.24.5.9

A Dynamic Locality Sensitive Hashing Algorithm for Efficient
Security Applications

Mohammad Y. Khanafseh
malkhanafseh@birzeit.edu

Computer Science Department
Birzeit University

Ramallah, Palestine

Ola M. Surakhi
o.surakhi@aum.edu.jo

Computer Science Department
American University of Madaba

Madaba, Jordan

Abstract: The information retrieval domain deals with the
retrieval of unstructured data such as text documents.
Searching documents is a main component of the modern
information retrieval system. Locality Sensitive Hashing
(LSH) is one of the most popular methods used in searching
for documents in a high-dimensional space. The main
benefit of LSH is its theoretical guarantee of query accuracy
in a multi-dimensional space. More enhancement can be
achieved to LSH by adding a bit to its steps. In this paper, a
new Dynamic Locality Sensitive Hashing (DLSH)
algorithm is proposed as an improved version of the LSH
algorithm, which relies on employing the hierarchal
selection of LSH parameters (number of bands, number of
shingles, and number of permutation lists) based on the
similarity achieved by the algorithm to optimize searching
accuracy and increasing its score. Using several tampered
file structures, the technique was applied, and the
performance is evaluated. In some circumstances, the
accuracy of matching with DLSH exceeds 95% with the
optimal parameter value selected for the number of bands,
the number of shingles, and the number of permutations lists
of the DLSH algorithm. The result makes DLSH algorithm
suitable to be applied in many critical applications that
depend on accurate searching such as forensics technology.
Keywords:
High Dimensional Data, Hash Function, Information Retrieval,
Locality Sensitive Hashing, Nearest Neighbors Search, Similarity

1. Introduction
With the development of advanced digital

technologies, many high-dimensional datasets grow
exponentially. Managing these data sets requires a
suitable dynamic mechanism that approximates the
search results instead of searching for exact results [1].
The nearest neighbors method in high-dimensional
space is effective in many important applications such
as information retrieval [2], audio fingerprinting [3],

biological and geological sciences [4], and more. The
method searches for results that are close enough (not
100% of accuracy) to the required data. For a high
number of dimensions, the nearest neighbors method
suffers from a well-known problem, the curse of
dimensionality where the performance decreases with
the increase in the number of features [5].

Many hashing algorithms have been proposed and
used for high-dimensional data such as dimensionality
reduction, data clustering, and classification algorithms
to increase the accuracy and searching speed of the
nearest neighbors and overcome its limitations [6]. The
Locality-Sensitive Hashing (LSH) algorithm [7] is an
efficient algorithm for dimension reduction problems
and data clustering [6]. The main concept of the LSH
algorithm is to map the high-dimensionality data to
lower-dimensionality data using a random hash
function [8]. For each hash function, a set of data points
are assigned to individual hash buckets so that the
closer data points in the original high-dimensional data
will be mapped to the same hash bucket in the low-
dimensional data.

The LSH can be applied in many applications that
depend on finding similarities between different data
points such as information retrieval, data mining,
classification problems, and more due to its theoretical
guarantee of query accuracy. The LSH algorithm also
uses a random hash function which makes it data-
independent where the distribution of these data does
not affect the generation of the hash function.
Additionally, for real-time applications where new data
are generated instantaneously, the hash function does
not require to be changed during runtime.

Due to its importance in many applications, many
variants of LSH have been proposed to improve its
performance and enhance searching accuracy [9-13].
The large index size problem in the LSH algorithm has
been solved by proposing many techniques such as

https://doi.org/10.22937/IJCSNS.2020.20.10.01
mailto:malkhanafseh@birzeit.edu
mailto:o.surakhi@aum.edu.jo

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 80

collision counting and virtual rehashing [14, 15]. Using
a small index guarantees fast query performance and
accuracy.

In this paper, we propose a new extension of the
LSH algorithm that is based on a hierarchy structure to
increase the performance of the algorithm. The
proposed algorithm, Dynamic Locality Sensitive
Hashing (DLSH) Algorithm uses a dynamic number of
LSH parameters (number of bands, number of shingles,
and number of permutation lists) depending on the data
similarity. The aim is to enhance matching accuracy to
make it suitable for security applications such as
forensics technology. The main contributions of this
paper can be summarized as follows:

1. We performed a review of the recent advances
in the LSH algorithm and summarized them
based on the architectural framework, the

applied application domain, and their
contributions.

2. We proposed a new hashing algorithm (DLSH)
based on the original LSH with an
improvement in the matching accuracy.
Dynamic identification of the original LSH
parameters (number of bands, number of
shingles, and number of permutation lists) is
used in a hierarchical order to optimize
searching results.

2. Related Works
There have been several improvements in the LSH
algorithm. This section summarized a list of these
improvements in the table below with the applications
of LSH for each of the previous works.

Table 1: A list of previous works on the LSH improvements.

Related Works LSH Technique Distance measure Application Contributions

Kim, et al. [16] Boosted LSH
(BLSH)

Hamming distance Audio spectra Reducing the redundancy in LSH projections

Datar, et al. [7] E2LSH Euclidean distance Synthetically
generated data sets
and query points

Reduces the number of false positives and false
negatives while keeping the accuracy high.

Lv, et al. [17] Hash-perturbation
LSH

Euclidean distance Image dataset and
Audio dataset

Reduce the large number of required hash tables in
the basic LSH

Lv, et al. [18] Multi-probe LSH Euclidean distance Image dataset and
Audio dataset

Uses less number of hash tables while achieving
the same accuracy

Ji, et al. [19] Super-bit LSH
(SBLSH)

Angular distance Image processing Proposed a super bits method that results in a
smaller estimation variance when the angle to
estimate is within (0, π/2]

Bawa, et al. [20] LSH Forest Jaccard-based Text/Document
Processing

Creates a prefix tree on each hash table and stores
the compound hash keys in the prefix trees

Satuluri and
Parthasarathy [21]

BayesLSH Euclidean distance,
Angular, and
Jaccard metrics

Text/Document
Processing

Use Bayesian statistics to find the probability
distribution of similarities between the query and
candidates by knowing the distribution of
collisions in projections.

Huang, et al. [22] An optimised
version of QALSH

Euclidean-based,
Jaccard-based, and
Hamming-based

Images processing Uses compound hash keys and R-trees

Yu, et al. [23] OS-LSH Not mentioned Audio
Improve the scalability of content-based retrieval
of audio tracks in music databases.

Ozawa, et al.[24] RAN-LSH Tolerant distance Security/Privacy Detect the spam emails

Zhang, et al. [25] LSHiForest Any distance metric Data Mining The proposed method outperforms other LSH in
time efficiency, anomaly detection quality, and
robustness

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 81

Jiand and Sun [26] Semi-Supervised
SimHash

Hamming Distance Text/Document
Processing

Search for similar documents in high-dimensional
spaces

Shrivastava and Li [27] ALSH Euclidean distance Machine Learning Improves the performance of Maximum Inner
Product Search (MIPS)

Kim, et al. [28] Stratified LSH
(SLSH)

Various distance
functions

Healthcare Presents a detection system for high-dimensional
physiological data using LSH

Fisichella, et al. [29] SimPair LSH Euclidean distance Plagiarism/Near-
Duplicate Detection

Solves the problem of near-duplicate detection for
high dimensional data points incrementally and
efficiently

By analyzing the related works from the
literature, it can be said that the improvement in the
LSH algorithm is done in the architectural framework
of the original LSH algorithm to make it efficient for
a specific application domain. As the LSH algorithm
has been applied in many applications [30], the
change in the base of the LSH algorithm has been
done to improve its processing speed of it in various
domains.

ln this paper, a new method is proposed which
enhances the performance of the original LSH by
adding value to the search technique aspect. The
proposed algorithm is applied to the Reuters dataset
to investigate its performance in searching for similar
documents in a high-dimensional space. The new
algorithm can be applied in many applications such
as information retrieval and security applications that
depend on searching high-dimensional data like
forensics.

3. Methods and Materials

3.1. Locality Sensitive Hashing Algorithm
For a large dataset, D consists of n points and d

dimensions, and for a query point q point to the same
space of the dataset, the goal of Approximate Nearest
Neighbors is to find an approximation ratio c >1 such
that for a returned point o ∈ D the distance between
two points is satisfied by the following formula:

dist(o, q) <= (c x o*, q)

where o* is the true nearest neighbors of q in D [31].
The LSH algorithm uses a hash function to push
down the nearest neighbors’ points in a high-
dimensional into low-dimensional space. For any
two points x and y in the d-dimensional dataset, the
hash function H is said to be sensitive if it satisfies
the following conditions:

1) |x -y| <= R, P(H(x) = H(y) >= p1
2) |x -y| <= cR, P(H(x) = H(y) <= p2

where p1 and p2 are the probabilities and c is the
approximation value. The conditions say that two
points x and y that are close to each other will be
hashed to the same bucket in the low-dimensional
space with a very high probability >=p1. If they are
not close, they will be hashed to the same bucket with
a low probability <=p2. More details about how the
LSH algorithm works are given below.
The original LSH algorithm hashes the data points in
the text into buckets where the data points near each
other are located on the same bucket, and the data
points far from each other are in different buckets.
By this, the degree of similarity between data points
is increased. The algorithm consists of three main
steps as follows [32, 33]:

1) Shingling: In this step, the input (for example,
document) is divided into a set of characters of
length k known as k-shingle to form the two-
dimensional shingle matrix. A small value of k
results in many shingles that may exist in the same
document. Each document is represented as a
column in the matrix and the set of shingles is
represented in the rows. If the shingle exists in the
document, a flag value is set to 1 in the matrix for the
corresponding document.

After that, a similarity measure, the Jaccard
index, is used to find the similarity between
documents. A high Jaccard value means that the
documents are most likely to be similar.

In finding similarities between documents,
scalability is a major concern when having n large
documents that will need a big memory for storing
them and a high complexity to perform a comparison
between shingles. To solve this issue, hashing is used
to convert each document into a small signature

(1)

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 82

value where the similarity between two documents
implies a high probability of having similar hash
values for the same documents. The hash function
that links the similarity metrics used in LSH is the
min-hash function which is applied in the next step.

2) Min-hashing: This step is critical and important.
It is responsible for compressing the shingle matrix
generated from the previous step into a smaller
matrix called the signature matrix saving on the
distance between the original documents.

The idea of the min-hashing algorithm depends
on finding a number of random lists called
permutation lists. Each permutation list refers to a
hash function. Each permutation list produces a row
in the signature matrix. The Min-hash function f (x)
of any column is the number of the first row, in the
permuted order, in which the column has a 1. The
result of the Min-hashing process is stored in a
signature matrix, where its rows are the Min-hashing
value, and the column of the signature matrix is the
file name.
The output of this step is the signature matrix with a
compressed row. Each row represents a min-hash
value and each column represents a document. The
similarity between documents is the same as the
original similarity between them in the shingle
matrix.

3) Locality-sensitive hashing: This step divides
the signature matrix into a set of bands in order to
identify the similarity between documents. The
details of this step are illustrated below:

a. Divide the signature matrix into b bands, each
band having r rows

b. For each band, hash its portion of each column
to a hash table with k buckets

c. Candidate column pairs are those that hash to
the same bucket for at least 1 band

d. Tune b and r to catch most similar pairs but few
non-similar pairs

3.2. The Proposed Algorithm: Dynamic
Locality Sensitive Hashing Algorithm
(DLSH)

The LSH algorithm is made up of a number of
critical variables or factors that play a key role in the
algorithm's accuracy and efficiency. The main
important parameters of the LSH algorithm are:

1. The length of the shingle used in the shingling
process.

2. The number of Bands.
3. The number of permutation lists used during the

signature matrix creation process.
The proper tuning of these parameters influences

the accuracy of the algorithm. In this paper, a new
modification to the LSH algorithm has been proposed
named Dynamic Locality Sensitive Hashing
Algorithm (DLSH) that tunes these parameters
dynamically in a hierarchical manner.

The DLSH algorithm is based on the old LSH
algorithm, however, it has been improved in terms of
efficiency and accuracy. The proposed technique
does not rely on a fixed number of bands, shingles, or
permutation lists. Instead, a dynamic form of these
parameters is proposed to improve the accuracy of the
original LSH algorithm.

These three parameters play an important role in
the accuracy of the original LSH algorithm. The
number of shingles divides the document into a
specific number of shingles. Similar documents are
more likely to share more shingles. In general, a small
value of shingles will result in bad differentiation of
documents and high time and space complexity.

Each shingle is then assigned to a unique index.
The document can be represented as a binary vector
with zero’s and one’s with one for every appearance
of the shingle. For N number of documents and D
total number of shingles, we have a huge matrix NxD.

After that, the permutation creates a signature for
the document. To do so, several permutations are
done on the document with different hash functions
to generate the document signature. So, for N
documents (row matrix) we perform K hash function
(for each column) on the document. But, to make it
more efficient, the algorithm actually does not
permute all the rows. Instead, the algorithm performs
band partitions.

The documents are hashed into buckets based on
the hash function if it is 1 or 0. Having two documents
in the same bucket means that these documents are
more likely to be similar and can be considered as a
candidate pair. Comparing the similarity between
each pair of documents in N documents requires n2
operations. If 1 pair takes a microsecond, 5000
documents will take 10 seconds and 500,000
documents will require more than one day. So, the

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 83

computational complexity of document comparison
is a bottleneck of the algorithm.

The documents that appear as a candidate pair will
be in the same band. The challenge here is how many
rows in the signature matrix (number of a hash
function) are to be used in the band, and how many
bands can be used to divide the matrix. Tunning these
parameters properly will affect the catching of similar
pairs. In general, a higher number of bands implies
lower similarity

In the proposed DLSH algorithm, a high accuracy
rate is achieved by the proper tunning of the original
LSH algorithm parameters. DLSH algorithm will test
the accuracy over three parameters as follows:

The length of shingles will be defined as a range,
for example, from 2 to 10. For each value in the range,
the algorithm will run two inner loops to test the
accuracy with a different number of bands and a
different number of hash functions, which means that
the number of bands will be started from two, then
the algorithm will be executed over different hash
functions, and the level of similarity is calculated for
the specified number of shingle and bands. The best
value is saved along with the optimal parameter value,
then the number of shingles is increased and the
algorithm repeats until the maximum loop parameter
is reached. For any better value of accuracy achieved,
the results are updated and the new value for the
optimal parameter is modified.

As the DLSH algorithm is inspired by the original
LSH algorithm, the shingling and min-hashing steps
are the same for both of them. The last step is
different, the details of the DLSH step are illustrated
below:

• The process started by defining a range for
shingles, which started as an example from 3 as the
initial value for the number of shingles, and each time
the number of shingles is incremented.

• For each file in the dataset or corpus, construct
Vocab, which is a database that contains all shingles
for all documents or files

• Specify the beginning value for Permutation lists,
which, as previously noted, are responsible for
converting the original term matrix into the small
matrix, for the specified numbers of shingles. There
will be a predetermined range for the number of
permutation lists, which will be raised by a certain
number, like three or two, each time.

• Construct the signature matrix.

• For each number of shingles and permutation
lists, define a range for the number of bands started
as an example from 3 and each time the number of
bands is incremented. The bands are used to divide
the signature matrix into groups, starting from Min
number of bands, and hash each band into the bucket
to define the matched files.

• The DLSH procedure will start with an initial
value of Permutation lists that will be used to
calculate the similarity between the target file or
tampered file and all other files and specify the files
that achieve a high level of accuracy based on the
equation (1). The parameter values that were utilized
to reach this degree of accuracy using current
parameters will be stored, such as the number of
shingles, bands, permutation lists, accuracy value,
and similarity findings, will be stored with the
accuracy of the matching process with the tampered
file.

• The similarity ratio between tampered file and
all other files will be calculated with each number of
permutation lists until reaches the maximum number
of permutation lists.

• The number of bands will be increased by a
specified range, and start again with an initial number
of Permutation Lists, and the accuracy will be
calculated and stored with used parameter values.

• The number of shingles will be increased by a
specified range with the number of bands reached to
the maximum number of bands, new accuracy values
with each number of shingles, bands, and
permutation lists.

• Until the number of shingles reaches the
maximum values or the accuracy with target files
reaches the optimal values that are established as a
threshold, the algorithm will continue to calculate
accuracy and similarity.

• At the end, the algorithm will generate the
percentage of matching between tampered and target
files, the accuracy level for the files which
participated in tampered file content, and the optimal
value of parameters used to achieve the optimal
accuracy value or the maximum value for accuracy
based on a comparison between different achieved
results.
Figure 1 below represents these steps as a flowchart
and shows the relations between different steps.

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 84

Figure 1: Main steps of dynamic locality sensitive hashing (DLSH).

3.3 Material Dataset
The idea of the proposed DLSH algorithm has

been tested and evaluated on the Reuters dataset. The
Reuters dataset is a collection of documents with
news articles. The original corpus has 10,369
documents and a vocabulary of 29,930 words. The
Reuters dataset is used to construct a set of tampered
files that are used for the testing of algorithm
performance. To investigate the performance of the
proposed DLSH searching algorithm, we construct a
tampered file from the dataset and let the algorithm
search the whole database for it. The tampered file is
constructed randomly, which means that it can be
defined as a collection of pieces of data from different
files from the original dataset where each file
participates in the tampered file construction with a
specific percentage. The data shouldn't be in
sequence and is selected from the original file in the
dataset randomly.

3.3.1 Tampered File Structure
The methodology considered in this experiment is

very efficient and can be used in many critical
applications such as forensics technology where
finding any piece of information is very important to
determine if this information has been altered or not.
Evidence tampering refers to the situation where the
attacker can falsify and alter the evidence to interfere
with the investigation process of forensics, which is
known as spoliation. The evidence tampering affects
the final verdict. The important issue here is that the
investigator requires a powerful technique to ensure
that tempering happens even if it is minor or not. It is
known that comparing digital evidence in a huge
dataset to determine and identify tampering requires
a lot of resources with additional security
requirements.

For this reason, we investigate the performance of
the proposed algorithm DLSH over a larger dataset
and by using a different tampered file structure. The
aim is to create a tampered file by adding a different
piece of data from different locations and test the

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 85

performance of DLSH in searching the whole dataset
to find the matched data.

 Six file structures are used to construct the
tampered file before running the experiments. The
aim of using this method is to show the effectiveness
of the proposed algorithm in finding the match of
each piece of file with its corresponding in the big
dataset. In the first case, the tampered file is
constructed from two different files with different
participation percentages for each one. The
participation of file manipulation in the second
structure consists of three files. The third structure
consists of four files. The fourth and fifth structures
consist of six and eight files participation respectively.
Finally, the sixth structure consists of ten files in the
tampered file structure.

4. Experimental Results and Discussion
In this section, the performance of the proposed

DLSH algorithm is given by applying it to the
tampered files and Reuter dataset for searching for
the original file. Six main experiments were done
using the six different tampered file structures. Each
time the algorithm searches for the best tunning of the
length of the shingle, the optimal number of bands,
and the optimal number of permutations. The best
accuracy value is saved with the value of the optimal
parameter.

The accuracy is evaluated as follows:

The results are given in the tables below.

Table 2: The results generated by the DLSH algorithm in searching for the tampered file with two different file’s structure

File number Participation
percentage

Accuracy Rate Similarity Rate Optimal
number of
bands

Optimal
number of
Shingles

Optimal number
of permutations

File One 62% 98.56% 61.11% 18 8 18
File Two 38% 97.70% 38.88% 18 9 18

Table 3: The results generated by the DLSH algorithm in searching for the tampered file with three different file’s structure

File number Participation
percentage

Accuracy Rate Similarity Rate Optimal
number of
bands

Optimal
number of
Shingles

Optimal
number of
permutations

File One 35% 95.23% 33.34% 3 3 3
File Two 41% 98.39% 41.66% 12 5 12
File Three 24% 96.00% 25.00% 12 4 12

Table 4: The results generated by the DLSH algorithm in searching for the tampered file with four different file’s structure

File number Participation
percentage

Accuracy Rate Similarity Rate Optimal
number of
bands

Optimal
number of
Shingles

Optimal number of
permutations

File One 21% 96.61% 22.22% 9 3 7
File Two 27% 98.76% 26.67% 15 10 15
File Three 20% 99.20% 20.83% 24 8 24
File Four 30% 99.42% 29.17% 24 6 24

Table 5: The results generated by the DLSH algorithm in searching for the tampered file with six different file’s structure

File number Participation
percentage

Accuracy Rate Similarity Rate Optimal
number of
bands

Optimal
number of
Shingles

Optimal number of
permutations

File One 15% 98.77% 14.814% 27 19 27
File Two 25% 100.00% 25.000% 12 5 24
File Three 12% 96.00% 12.500% 24 19 24
File Four 28% 99.20% 27.777% 18 10 18
File Five 13% 97.50% 13.334% 15 14 15
File Six 7% 95.23% 6.667% 15 3 15

Table 6: The results generated by the DLSH algorithm in searching for the tampered file with eight different file’s structure

File number Participation
percentage

Accuracy Rate Similarity Rate Optimal
number of
bands

Optimal
number of
Shingles

Optimal number of
permutations

File One 12% 96.00% 12.50% 24 6 24

(2)

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 86

File Two 14% 95.23% 13.33% 15 5 15
File Three 22% 99.00% 22.22% 9 3 18
File Four 11% 99.00% 11.11% 9 4 18
File Five 27% 98.77% 26.67% 15 14 15
File Six 5% 95.23% 4.76% 21 8 21
File Seven 6% 90.00% 6.67% 15 4 15
File Eight 3% 72.00% 4.17% 24 18 24

Table 7: The results generated by the DLSH algorithm in searching for the tampered file with ten different file’s structure

File number Participation
percentage

Accuracy
Rate

Similarity
Rate

Optimal
number of
bands

Optimal
number of
Shingles

Optimal
number of
permutations

File One 8% 96.00% 8.333% 12 17 24
File Two 12% 96.00% 12.500% 24 19 24
File Three 6% 92.95% 5.555% 18 14 18
File Four 14% 84.00% 16.666% 6 3 12
File Five 7% 94.50% 7.407% 27 11 27
File Six 13% 97.50% 13.333% 15 7 15
File Seven 5% 60.00% 8.334% 12 5 24
File Eight 15% 98.77% 14.814% 27 9 27
File Nine 4% 72.00% 5.555% 18 21 18
File Ten 16% 96.00% 16.667% 6 3 18

Analyzing the results that are presented in the tables
shows that the DLSH algorithm is accurate in the
process of matching all the files that were involved
in the tampered file construction process. The level
of accuracy in the matching with original files was
calculated using the equation mentioned earlier.

However, because more than one structure of
tampered files is used to test the ability of the
algorithm to extract the original files, the matching
procedure is difficult. The results reveal that in most
circumstances, the accuracy of matching in each case
of a tampered file is greater than 80% to identify the
original files from thousands of files. The file size
influences the accuracy rate, the file that has higher
participation in the tampered file returns a higher
accuracy rate and vice versa. In general, a file with a
small percentage of participation needs a high band
value to generate the most accurate rate. This result
is important because if we have a large number of
bands; this means that we increase the probability of
finding a pair of documents that are likely to be
similar. As this happens with a small piece of the
document (low participation percentage) this means
that the algorithm is able to search on this small piece
accurately and find the matching documents. Thus,
DLSH algorithm is robust and more efficient than
regular LSH.

Another observation is related to the number of
permutations being close to the number of bands.
The proper tunning of these parameters is powerful.
It is well known in the LSH algorithm that if we take

a large value of bands means that a greater number
of permutations (hash functions) will be used. DLSH
finds this result heuristically with its robust search.
The value of the number of bands found by the
algorithm is close to the number of permutations in
each experiment.

DLSH algorithm is robust, optimized, and able
to tune its parameters heuristically to guarantee the
generation of highly accurate matching results. This
conclusion makes the algorithm suitable to be
applied in many important applications where
searching for a huge amount of data is mandatory.
Forensic technology is an example of such an
application. The investigator in forensics technology
may need to search a huge amount of data for a small
piece of information to be used as evidence in the
criminal investigation.

5. Conclusion and Future Works
This paper proposed a new Hierarchical Locality

Sensitive Hashing algorithm (DLSH), which is based
on the original Locality Sensitive Hashing algorithm
(LSH). The DLSH algorithm tunes some parameters
of the original LSH algorithm heuristically by
searching for the optimal value of these parameters
that will lead to the best searching accuracy score.
These parameters are the length of the shingle, the
number of bands, and the number of permutation lists.
The new algorithm was tested using different
structures for tampered file content. The performance

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 87

evaluation was done by searching for the matching
between created tampered files over the Reuters
dataset which contains 10,369 documents and a
vocabulary of 29,930 words. The results show that
DLSH algorithm is robust and accurate in the
matching process with a high score for accuracy
value.

In the future, the DLSH algorithm could be
employed in a variety of sectors that rely heavily on
the concept of matching, such as digital forensics,
intrusion detection systems, and other sensitive fields.
Other improvements to this version of the DLSH
algorithm may be added in the future to improve
accuracy and minimize execution time.

References
[1] Bello-Orgaz, G.; Jung, J.J.; Camacho, D. Social big data:

Recent achievements and new challenges. Inf. Fusion
2016, 28, 45–59

[2] Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang,
Yunjian Zhao, Xiao Yan, and Ruihao Zhao. 2017. Losha:
A general framework for scalable locality sensitive
hashing. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in
Information Retrieval. 635–644.

[3] G Padmasundari and Hema A Murthy. 2017. Raga
identification using locality sensitive hashing. In 2017
Twenty-third National Conference on Communications
(NCC). IEEE, 1–6

[4] Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B
Mallonee, Nicholas H Bergman, Sergey Koren, and Adam
M Phillippy. 2016. Mash: fast genome and metagenome
distance estimation using MinHash. Genome biology 17, 1
(2016), 1–14.

[5] [5] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates,
and José Luis Marroquín. 2001. Searching in metric spaces.
ACM computing surveys (CSUR) 33, 3 (2001), 273–321

[6] Park, J.S.; Chen, M.S.; Yu, P.S. An Effective Hash-Based
Algorithm for Mining Association Rules; ACM: New York,
NY, USA, 1995

[7] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S
Mirrokni. 2004. Locality-sensitive hashing scheme based
on p-stable distributions. In Proceedings of the twentieth
annual symposium on Computational geometry.

[8] Mehmet Ali Abdulhayoglu and Bart Thijs. 2018. Use of
locality sensitive hashing (LSH) algorithm to match Web
of Science and Scopus. Scientometrics 116, 2 (2018),
1229–1245

[9] Mayank Bawa, Tyson Condie, and Prasanna Ganesan.
2005. LSH forest: self-tuning indexes for similarity search.
In Proceedings of the 14th international conference on
World Wide Web. 651–660.

[10] Gan, Junhao, et al. "Locality-sensitive hashing scheme
based on dynamic collision counting." Proceedings of the
2012 ACM SIGMOD international conference on
management of data. 2012.

[11] Jafari, Omid, et al. "A survey on locality sensitive hashing

algorithms and their applications." arXiv preprint
arXiv:2102.08942 (2021).

[12] Wanqi Liu, Hanchen Wang, Ying Zhang, Wei Wang, and
Lu Qin. 2019. I-LSH: I/O efficient c-approximate nearest
neighbour search in high dimensional space. In 2019 IEEE
35th International Conference on Data Engineering
(ICDE). IEEE, 1670–1673.

[13] Sunwoo Kim, Haici Yang, and Minje Kim. 2020. Boosted
Locality Sensitive Hashing: Discriminative Binary Codes
for Source Separation. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 106–110.

[14] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng.
2012. Locality-sensitive hashing scheme based on
dynamic collision counting. In Proceedings of the 2012
ACM SIGMOD international conference on management
of data. 541–552

[15] Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing. 604–613.

[16] Sunwoo Kim, Haici Yang, and Minje Kim. 2020. Boosted
Locality Sensitive Hashing: Discriminative Binary Codes
for Source Separation. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 106–110.

[17] Qin Lv, William Josephson, Zhe Wang, Moses Charikar,
and Kai Li. [n.d.]. A Time-Space Efficient Locality
Sensitive Hashing Method for Similarity Search in High
Dimensions. Technical Report.

[18] Qin Lv, William Josephson, Zhe Wang, Moses Charikar,
and Kai Li. 2007. Multi-probe LSH: efficient indexing for
high-dimensional similarity search. In 33rd International
Conference on Very Large Data Bases, VLDB 2007.
Association for Computing Machinery, Inc, 950–961.

[19] Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, and Qi
Tian. 2012. Super-bit locality-sensitive hashing. In
Advances in neural information processing systems.
Citeseer, 108–116.

[20] Mayank Bawa, Tyson Condie, and Prasanna Ganesan.
2005. LSH forest: self-tuning indexes for similarity search.
In Proceedings of the 14th international conference on
World Wide Web. 651–660.

[21] Venu Satuluri and Srinivasan Parthasarathy. 2011.
Bayesian locality sensitive hashing for fast similarity
search. arXiv preprint arXiv:1110.1328 (2011).

[22] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and
Wilfred Ng. 2015. Query-aware locality-sensitive hashing
for approximate nearest neighbor search. Proceedings of
the VLDB Endowment 9, 1 (2015), 1–12.

[23] Yi Yu, Michel Crucianu, Vincent Oria, and Ernesto
Damiani. 2010. Combining multi-probe histogram and
order-statistics based lsh for scalable audio content
retrieval. In Proceedings of the 18th ACM international
conference on Multimedia. 381–390.

[24] Seiichi Ozawa, Junji Nakazato, Tao Ban, Jumpei
Shimamura, et al. 2015. An online malicious spam email
detection system using resource allocating network with
locality sensitive hashing. Journal of intelligent learning
systems and applications 7, 02 (2015), 42.

[25] Xuyun Zhang, Wanchun Dou, Qiang He, Rui Zhou,

IJCSNS International Journal of Computer Science and Network Security, VOL.24 No.5, May 2024 88

Christopher Leckie, Ramamohanarao Kotagiri, and Zoran
Salcic. 2017. LSHiForest: A generic framework for fast
tree isolation based ensemble anomaly analysis. In 2017
IEEE 33rd International Conference on Data Engineering
(ICDE). IEEE, 983–994

[26] Qixia Jiang and Maosong Sun. 2011. Semi-supervised
simhash for efficient document similarity search. In
Proceedings of the 49th annual meeting of the association
for computational linguistics: Human language
technologies. 93–101.

[27] Anshumali Shrivastava and Ping Li. 2014. Asymmetric
LSH (ALSH) for sublinear time Maximum Inner Product
Search (MIPS). Advances in Neural Information
Processing Systems 3, January (2014), 2321–2329.

[28] Yongwook Bryce Kim, Erik Hemberg, and Una-May
O’Reilly. 2016. Stratified locality-sensitive hashing for
accelerated physiological time series retrieval. In 2016
38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC).
IEEE, 2479–2483.

[29] Marco Fisichella, Fan Deng, and Wolfgang Nejdl. 2010.
Efficient incremental near duplicate detection based on
locality sensitive hashing. In the International Conference
on Database and Expert Systems Applications. Springer,
152–166

[30] Jafari, Omid, et al. "A Survey on Locality Sensitive
Hashing Algorithms and their Applications." arXiv
preprint arXiv:2102.08942 (2021).

[31] Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing. 604–613

[32] D. Ravichandran, P. Pantel, and E. Hovy. Randomized
algorithms and nlp: using locality sensitive hash function
for high speed noun clustering. In ACL, 2005.

[33] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proc. of 25th Intl. Conf.
on Very Large Data Bases(VLDB), pages 518–529, 1999

