• Title/Summary/Keyword: multi-band

Search Result 1,281, Processing Time 0.038 seconds

Comparison between FFT and LSC Method for the Residual Geoid Height Modeling in Korea (한국의 잔여지오이드고 모델링을 위한 FFT 및 LSC 방법 비교)

  • Lee, Dong Ha;Yun, Hong Sic;Suh, Yong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.323-334
    • /
    • 2011
  • In this study, we performed the residual geoid modeling using the FFT and LSC methods in context of application of R-R (Remove and Restore) technique as a general technique for gravimetric geoid model in order to propose the effective way of geoid determination in Korea. For this, a number of data compiled for residual geoid modeling by the multi-band spherical FFT method with Stoke's formula and LSC method as known as statistical method. The geometric geoidal heights obtained from 503 GPS/Levelling data were used for inducing the various elements and proper computation process which should be considered for improving the accuracy of residual geoid modeling. Finally, we statistically compared the results of residual geoid heights between FFT and LSC methods and reviewed then the proper way of residual geoid modeling to the region of Korea. As the results of comparison, LSC method is not suitable for residual geoid modeling in Korea due to the noise and lack of gravity observations and the effects of local characteristics, while FFT method by applying Stokes' integral with proper cap size and modified kernel which provides the better accuracy of residual geoid heights up to 10 cm more than those of LSC method.

Improvement of Microphone Away Performance in the Low Frequencies Using Modulation Technique (변조 기법을 이용한 마이크로폰 어레이의 저주파 대역 특성 개선)

  • Kim, Gi-Bak;Cho, Nam-Ik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.111-118
    • /
    • 2005
  • In this paper, we employ the modulation technique for improving the characteristics of beamformer in the low frequencies and thus improving the overall noise reduction performance. In the 1-dimensional uniform linear microphone arrays, we can suppress the narrowband noise component using the delay-and-sum beamforming. But, for the wideband noise signal, the delay-and-sum beamformer does not work well for the reduction of low frequency component because the inter-element spacing is usually set to avoid spatial aliasing at high frequencies. Hence, the beamwidth is not uniform with respect to each frequency and it is usually wider at the low frequencies. In order to obtain the beamwidth independent of frequencies, subarray systems[1][2][3][4] and multi-beamforming[5] have been proposed. However these algorithms need large space and more microphones since they are based on the theory that the size of the array is proportional to the wavelength of the input signal. In the proposed beamformer, we reduce the low frequency noise by using modulation technique that does not need additional sensors or non-uniform spacing. More Precisely, the array signals are split into subbands, and the low frequency components are shifted to high frequencies by modulation and reduced by the delay-and-sum beamforming techniques with small size microphone array. Experimental results show that the proposed technique Provides better performance than the conventional ones, especially in the low frequency band.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Characteristics of the SAR Images and Interferometric Phase over Oyster Sea Farming Site (굴 양식장에서의 SAR 영상 및 간섭위상 특성)

  • 김상완;이창욱;원중선
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.209-220
    • /
    • 2002
  • We carried out studies on SAR image intensity and interferometric phase over oyster sea farms. Strong backscattering was observed in amplitude images, and that was considered as a radar signal double bouncing from horizontal bars. These sea farming structures are not visible in satellite optical images except IKONOS image, so that it demonstrates the value of radar remote sensing as an effective tool in support of sea farm detection. The intensity of the image is sensitive to system parameters including wavelength, polarization, and look direction, but does not correlate to tide height. We found that the strongest backscattering can be obtained by L-band HH-polarization with a look direction perpendicular to the horizontal bar. We also succeeded in generating 21 coherent JERS-1 SAR interferometric pairs over the oyster farms. The general trend of the fringe rate of the interferometric phases appeared to be governed by altitude of ambiguity. The general trend was modeled by an inverse function and removed to have a residual phase. The residual phase showed a linear relation with the tide height. The results demonstrate for the first time that SAR can possibly be used to estimate sea level. However, the r.m.s. error of a regression line is 11.7 cm, and that is so far too large to make reliable assessments of sea level in practical applications. Further studies is required to improve the accuracy specifically using multi-polarization SAR data.

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.

Feasibility of hearing aid gain self-adjustment using speech recognition (말소리 인지를 이용한 보청기 이득 자가 조절의 실현)

  • Yun, Donghyeon;Shen, Yi;Zhang, Zhuohuang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.76-86
    • /
    • 2022
  • Personal hearing devices, such as hearing aids, may be fine-tuned by allowing the users to conduct self-adjustment. Two self-adjustment procedures were developed to collect the listener preferred gains in six octave-frequency bands from 0.25 kHz to 8 kHz. These procedures were designed to allow rapid exploration of a multi-dimensional parameter space using a simple, one-dimensional user control interface (i.e., a programmable knob). The two procedures differ in whether the user interface controls the gains in all frequency bands simultaneously (Procedure A) or only the gain in one frequency band (Procedure B) on a given trial. Monte-Carlo simulations suggested that for both procedures the gain preference identified by simulated listeners rapidly converged to the ground-truth preferred gain profile over the first 20 trials. Initial behavioral evaluations of the self-adjustment procedures, in terms of test-retest reliability, were conducted using 20 young, normal-hearing listeners. Each estimate of the preferred gain profile took less than 20 minutes. The deviation between two separate estimates of the preferred gain profile, conducted at least a week apart, was about 10 dB ~ 15 dB.

High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection (고속 수중운동체 탐지를 위한 일반화된 사인파 주파수 변조 기반 고해상도 거리 및 속도 추정 기법)

  • Jinuk Park;Geunhwan Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.320-328
    • /
    • 2023
  • Underwater active target detection is vital for defense systems, requiring accurate detection and estimation of distance and velocity. Sequential transmission is necessary at each beam angle, but divided pulse length leads to range ambiguity. Multi-frequency transmission results in time-bandwidth product losses when bandwidth is divided. To overcome these problem, we propose a novel method using Generalized Sinusoidal Frequency Modulation (GSFM) for rapid target detection, enabling low-correlation pulses between subpulses without bandwidth division. The proposed method allows for rapid updates of the distance and velocity of target by employing GSFM with minimized pulse length. To evaluate our method, we simulated an underwater environment with reverberation. In the simulation, a linear frequency modulation of 0.05 s caused an average distance estimation error of 50 % and a velocity estimation error of 103 % due to limited frequency band. In contrast, GSFM accurately and quickly tracked targets with distance and velocity estimation errors of 10 % and 14 %, respectively, even with pulses of the same length. Furthermore, GSFM provided approximate azimuth information by transmitting highly orthogonal subpulses for each azimuth.

Comparison of Population Monitoring Methods for Breeding Forest Birds in Korean Temperate Mixed Forests (국내 온대 혼효림에 서식하는 산림성 조류의 번식기 개체군 모니터링 방법에 대한 비교)

  • Nam, Hyun-Young;Choi, Chang-Yong;Park, Jin-Young;Hur, Wee-Haeng
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.663-674
    • /
    • 2019
  • Birds are effective ecological indicators but there is no national protocol in place to monitor population dynamics of forest birds in Korea. To support the establishment of future monitoring protocols, we compared the results of two generally used monitoring methods for forest bird surveys in two temperate mixed forests in central Korea. There was no statistical difference in the number of species and individuals detected per unit survey effort when comparing line transects and point counts. The number of species and individuals were higher in a five-minute count than in a three-minute point count, but the total accumulated number of expected observed species showed no difference between the two count durations. The number of observed species and individuals increased in both methods as plot radius or transect width increased, suggesting that multi-layer or multi-band surveys may be useful for quantitative and qualitative objectives. The decreasing number of observed species and individuals after sunrise suggested that bird monitoring should be conducted earlier in the morning, within four hours after sunrise. To detect 70% of the total number of species, 7.0 to 7.6 survey hours, equivalent to 42 three-minute counts (95% confidence interval [CI]: 26 to 61) or 33 five-minute counts (95% CI: 19 to 53) were needed for unlimited radius point counts. On the other hand, 4.8 survey hours, equivalent to 26 line transect counts (95% CI: 15 to 45) using 200-m transects with unlimited width, were required to achieve the same level of species detection. Therefore, the line transect method may be more effective than the point count method, at least in terms of local species richness assessment. For national forest bird monitoring, our data indicated that one or both survey methods can be selected as a basic protocol, based on the goals and scales of monitoring, forest types, and the conditions of the target areas.

Magnetic Properties of Electroless Co-Mn-P Alloy Deposits (무전해 Co-Mn-P 합금 도금층의 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 1999
  • Usually sputtering and electroless plating methods were used for manufacturing metal-alloy thin film magnetic memory devices. Since electroless plating method has many merits in mass production and product variety com­pared to sputtering method, many researches about electroless plating have been performed in the United State of America and Japan. However, electroless plating method has not been studied frequently in Korea. In these respects the purpose of this research is manufacturing Co-Mn-P alloy thin film on the corning glass 2948 by electroless plating method using sodium hypophosphite as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction 0$\alpha$urred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of $80^{\circ}C$. Also magnetic charac­teristics was found to be most excellent at the pH of 9 and the temperature of $70^{\circ}C$, resulting in the coercive force of 8700e and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was $0.216\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand,(1010), (0002), (1011) orientation of hcp for a-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-Mn-P alloy deposition, coercive force was about 1000e more than that of Co P alloy, but squareness had no difference. For crystal orientation, (l01O) and (lOll) orientation of $\alpha$-Co was dominant as same as that of Co- P alloy. Likewise we could confirm the formation of longitudinal magnetization.

  • PDF