DOI QR코드

DOI QR Code

Comparison between FFT and LSC Method for the Residual Geoid Height Modeling in Korea

한국의 잔여지오이드고 모델링을 위한 FFT 및 LSC 방법 비교

  • 이동하 (성균관대학교 공과대학) ;
  • 윤홍식 (성균관대학교 사회환경시스템공학과) ;
  • 서용철 (부경대학교 공간정보시스템공학과)
  • Received : 2010.11.24
  • Accepted : 2011.01.31
  • Published : 2011.04.30

Abstract

In this study, we performed the residual geoid modeling using the FFT and LSC methods in context of application of R-R (Remove and Restore) technique as a general technique for gravimetric geoid model in order to propose the effective way of geoid determination in Korea. For this, a number of data compiled for residual geoid modeling by the multi-band spherical FFT method with Stoke's formula and LSC method as known as statistical method. The geometric geoidal heights obtained from 503 GPS/Levelling data were used for inducing the various elements and proper computation process which should be considered for improving the accuracy of residual geoid modeling. Finally, we statistically compared the results of residual geoid heights between FFT and LSC methods and reviewed then the proper way of residual geoid modeling to the region of Korea. As the results of comparison, LSC method is not suitable for residual geoid modeling in Korea due to the noise and lack of gravity observations and the effects of local characteristics, while FFT method by applying Stokes' integral with proper cap size and modified kernel which provides the better accuracy of residual geoid heights up to 10 cm more than those of LSC method.

본 연구에서는 일반적인 중력지오이드 모델 결정방법인 Remove-Restore(R-R) 기법 적용 시 FFT 방법 및 LSC 방법에 의한 잔여지오이드고 모델링을 각각 적용하고, 이에 대한 정확도를 분석하여 보다 효율적인 지오이드 결정 방안을 제시하고자 하였다. 이를 위해 우리나라 육상 및 해상에서 측정된 총 6,296점의 중력관측자료에 대하여 Stokes 공식을 적용한 다중밴드 구면 FFT 방법 및 통계적 결정방법인 LSC 방법을 각각 적용하였으며, 503점의 GPS/Levelling 자료에서 획득된 기하학적 지오이드고를 이용하여 모델링시 계산 결과의 정확도 향상을 위하여 결정되어야 하는 다양한 계산요소 및 적합한 계산과정을 결정하였다. 그 후 각 방법에 의하여 계산된 잔여지오이드고를 통계적으로 분석하여 한국의 지오이드 결정을 위하여 적합한 잔여지오이드고 모델링 방안을 검토하였다. 그 결과 LSC 방법의 경우 중력관측자료의 오차, 분포밀도의 부족 및 공분산 해석시 지역별 특성의 영향으로 정확한 잔여지오이드고의 모델링이 적용되지 못하였으며, 다중밴드 구면 FFT 방법의 경우 Stokes 적분을 위한 적절한 적분반경 및 수정 kernel의 적용을 통해 LSC 방법보다 약 10cm 이상의 정확도가 향상된 잔여지오이드고가 계산되었다.

Keywords

References

  1. 윤홍식, 이동하(2005) Least Square Collocation에 의한 GPS/Levelling의 정확도 개선. 한국측량학회지, 한국측량학회, 제23권, 제4호, pp. 385-392.
  2. 이동하(2008) 한국의 고정밀 합성지오이드 모델의 개발. 박사학위 논문, 성균관대학교.
  3. 이동하, 이석배, 권재현, 윤홍식(2008) 다양한 중력학적 환산방법을 적용한 한국의 합성지오이드 개발. 대한토목학회논문집, 대한토목학회, 제28권, 제5D호, pp. 741-747.
  4. 이석배(1996) FFT에 의한 한반도 일원에서의 정밀지오이드 결정. 박사학위논문, 성균관대학교.
  5. 황학, 윤홍식, 이동하, 정태준(2009) 남한지역에서의 초고차항 중력장모델 EGM2008의 정확도 분석. 대한토목학회논문집, 대한토목학회, 제29권, 제1D호, pp. 161-166.
  6. Bajracharya, S. (2003) Terrain effects on geoid determination. Ph.D. dissertation, University of Calgary, Canada.
  7. Esan, O. (2000) Spectral Analysis of Gravity Field Data and Errors in view of Sub-Decimetre Geoid Determination in Canada. Master's thesis, University of Calgary, Canada.
  8. Featherstone, W. E., Evans, J. D., and Oliver, J. G. (1998) A Meisslmodified Vanicek and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. Journal of Geodesy, Vol. 72, No. 3, pp. 154-160. https://doi.org/10.1007/s001900050157
  9. Forsberg, R. (1984) Terrain corrections for gravity measurements. M.Sc. thesis, Dept. of Surveying Engineering, University of Calgary, Calgary, Alberta, Canada.
  10. Forsberg, R. and Sideris, M. G. (1993) Geoid computation by the multi-band spherical FFT approach. Manuscr. Geod., Vol. 18, pp. 82-90.
  11. Forsberg, R. and Tscherning, C. C. (1997) Topographic effects in gravity field modelling for BVP, Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, Vol. 65, pp. 239-272.
  12. Forsberg, R. and Featherstone, W. E. (1998) Geoids and cap-sizes. Geodesy on the Move: Gravity, Geoids, Geodynamics and Antarctica, Forsberg, R., Feissl, M. and Dietrich, R. eds., Springer, Berlin, Germany, pp. 194-200.
  13. Forsberg, R., Tscherning, C. C., and Knudsen, P. (2003) An Overview Manual of the GRAVSOFT. Kort & Matrikelstyrelse.
  14. Heiskanen, W. A. and Moritz, H. (1967), Physical Geodesy. W. H. Freeman and Co., San Fransisco.
  15. Meissl, P. (1971) Preparations for the numerical evaluation of second-order Molodensky-type formulas. Report 163, Dept Geod Sci & Surv, Ohio State University, Columbus, USA.
  16. Molodensky, M.S., Eremeev, V.F., and Yurkina, M.I. (1962) Methods for Study of the external gravitational field and figure of the earth. Israeli Programme for the Translation of Scientific Publications, Jerusalem.
  17. Moritz, H. (1980) Advanced Physical Geodesy. H. Wichmann Verlag, Karlsruhe.
  18. Neyman, Y. M., Li, J., and Liu, Q. (1996) Modification of Stokes and Vening-Meinesz formulas for the inner zone of arbirary shape by minimisation of upper bound truncation errors. Journal of Geodesy, Vol. 70, pp. 410-418. https://doi.org/10.1007/BF01090816
  19. Omang, O. C. D. and Forsberg, R. (2000) How to handle topography in practical geoid determination: three examples. Journal of Geodesy, Vol. 74, pp. 458-466. https://doi.org/10.1007/s001900000107
  20. Omang, O. C. D. and Forsberg, R. (2002) The northern European geoid: a case study on long-wavelength geoid errors. Journal of Geodesy, Vol. 76, pp. 369-380. https://doi.org/10.1007/s00190-002-0261-x
  21. Schwarz, K. P., Sideris, M. G., and Forsberg, R. (1990) Use of FFT methods in Physical Geodesy. Geophysical Journal International, Vol. 100, pp. 485-514. https://doi.org/10.1111/j.1365-246X.1990.tb00701.x
  22. Sjoberg, L. E. (1991) Refined least squares modification of Stokes's formula. Manuscripta Geodaetica, Vol. 16, pp. 367-375.
  23. Stokes, G. G. (1849) On the variation of gravity at the surface of the Earth. Transactions of the Cambridge Philosophical Society, Vol. 8, pp. 672-695.
  24. Strang van Hees G. (1990) Stokes formula using fast Fourier techniques. Manuscripta Geodaetica, Vol. 15, pp. 235-239.
  25. Tscherning, C. C. and Rapp, R. H. (1974) Closed covariance expression for gravity anomalies, geoid undulations and deflections of the vertical implied by anomaly degree-variance models. OSU Report No.208, Department of Geodetic Science and Surveying, Ohio State University.
  26. Tscherning, C. C. (1994) Local approximation of the gravity potential by least-squares collocation. Proceedings of the international summer school on local gravity field approximation, Beijing, China, August 21 - September 4.
  27. Tscherning, C. C., Knudsen P., and Forsberg R. (1994) Description of the GRAVSOFT package. Technical Report, Geophysical Institute, University of Copenhagen, Denmark.
  28. Vanicek, P. and Kleusberg, A. (1987) The Canadian geoid - Stokesian approach. Manuscripta Geodaetica, Vol. 12, pp. 86-98.
  29. Vanicek, P. and Sjoberg, L. E. (1991) Reformulation of Stokes's theory for higher than second-degree reference field and modification of integration kernels. J Geophys Res, Vol. 96, No. B4, pp. 6529-6540. https://doi.org/10.1029/90JB02782
  30. Wenzel, H. G. (1982) Geoid computation by least squares spectral combination using integral kernels. Proc IAG General Meeting, Tokyo, pp. 438-453.
  31. Wong, L. and Gore, R. (1969) Accuracy of geoid heights from modified Stokes kernels. Geophysical Journal of the Royal Astronomical Society, Vol. 18, pp. 81-91. https://doi.org/10.1111/j.1365-246X.1969.tb00264.x
  32. Yun, H. S. (1995) Results of the geoid computation for Korean peninsula. Ph.D. dissertation, Technical University of Budapest, Hungary.
  33. Yun, H. S. (1999) Precision geoid determination by spherical FFT in and around the Korean peninsula, Earth Planets and Space, Vol. 51, pp. 13-18. https://doi.org/10.1186/BF03352204
  34. Zelin, G. and Zuofa, L. (1992) Modified Stokes's integral formulas using FFT. Manuscripta Geodaetica, Vol. 17, pp. 227-232.