DOI QR코드

DOI QR Code

Feasibility of hearing aid gain self-adjustment using speech recognition

말소리 인지를 이용한 보청기 이득 자가 조절의 실현

  • Yun, Donghyeon (Department of Speech, Language and Hearing Sciences, Indiana University Bloomington) ;
  • Shen, Yi (Department of Speech and Hearing Sciences, University of Washington) ;
  • Zhang, Zhuohuang (Department of Speech, Language and Hearing Sciences, Indiana University Bloomington)
  • Received : 2021.11.17
  • Accepted : 2022.01.03
  • Published : 2022.01.31

Abstract

Personal hearing devices, such as hearing aids, may be fine-tuned by allowing the users to conduct self-adjustment. Two self-adjustment procedures were developed to collect the listener preferred gains in six octave-frequency bands from 0.25 kHz to 8 kHz. These procedures were designed to allow rapid exploration of a multi-dimensional parameter space using a simple, one-dimensional user control interface (i.e., a programmable knob). The two procedures differ in whether the user interface controls the gains in all frequency bands simultaneously (Procedure A) or only the gain in one frequency band (Procedure B) on a given trial. Monte-Carlo simulations suggested that for both procedures the gain preference identified by simulated listeners rapidly converged to the ground-truth preferred gain profile over the first 20 trials. Initial behavioral evaluations of the self-adjustment procedures, in terms of test-retest reliability, were conducted using 20 young, normal-hearing listeners. Each estimate of the preferred gain profile took less than 20 minutes. The deviation between two separate estimates of the preferred gain profile, conducted at least a week apart, was about 10 dB ~ 15 dB.

보청기와 같은 청력 보장구는 자가 이득 조절을 통한 미세 조절이 가능 할 수 있다. 0.25 kHz ~ 8 kHz 옥타브 주파수 밴드의 대상자 선호 이득 측정을 위해 두 종류의 자가 이득 처방 절차가 개발 되었다. 이들 절차는 일차원 사용자 조절 인터페이스(프로그램된 다이얼)를 이용하여 다차원 변수를 빠르게 획득 할 수 있도록 디자인 되었다. 두 종류의 자가 이득 처방 절차는 사용자 인터페이스가 6개 주파수 밴드의 이득을 동시에 조절 하는지(Procedure A) 혹은 각 주파수 밴드를 개별적으로 조절 하는지(Procedure B) 에 따라 구분 된다. Monte-Carlo 시뮬레이션은 두 종류의 자가 이득 처방 절차에서 첫 20번의 반복된 시도동안 가상의 실제 선호이득값에 빠르게 수렴 할 수 있음을 보여 줬다. 20명의 젊은 정상 청력인을 대상으로 두 종류의 자가이득 처방 절차에 대한 행동 데이터 평가가(실험-재실험에 관한 신뢰도) 이뤄졌다. 선호 이득 측정은 20 min 미만의 시간이 소요 되었다. 최소 일주일 이상 간격을 두고 측정된 두 번의 사용자 선호 이득의 평균 제곱근 편차는 대략 10 dB ~ 15 dB 수준이었다.

Keywords

Acknowledgement

This work was supported by NIH grant R01DC017988.

References

  1. G. Keidser, H. Dillon, M. Flax, T Ching, and S. Brewer, "The NAL-NL2 prescription procedure," Audiol. Res. 1, 88-90 (2011).
  2. R. Seewald, S. Moodie, S. Scollie, and M. Bagatto, "The DSL method for pediatric hearing instrument fitting: Historical perspective and current issues," Trends Amplif. 9, 145-157 (2005). https://doi.org/10.1177/108471380500900402
  3. B. C. Moore, B. R. Glasberg, and M. A. Stone, "Development of a new method for deriving initial fittings for hearing aids with multi-channel compression: CAMEQ2-HF," Int. J. Audiol. 49, 216-227 (2010). https://doi.org/10.3109/14992020903296746
  4. E. A. Lopez-Poveda, P. T. Johannesen, P. Perez-Gonzalez, J. L. Blanco, S. Kalluri, and B. Edwards, "Predictors of hearing-aid outcomes," Trends Hear. 21, 2331216517730526 (2017).
  5. H. G. Mueller, B. W. Hornsby, and J. E. Weber, "Using trainable hearing aids to examine real-world preferred gain," J. Am. Acad. Audiol. 19, 758-773 (2008). https://doi.org/10.3766/jaaa.19.10.4
  6. C. Mackersie, A. Boothroyd, and A. Lithgow, "A "Goldilocks" approach to hearing-aid self-fitting : Earcanal output and speech intelligibility index," Ear Hear. 40, 107 (2019). https://doi.org/10.1097/AUD.0000000000000617
  7. E. Convery, G. Keidser, M. Seeto, and M. McLelland, "Evaluation of the self-fitting process with a commercially available hearing aid," J. Am. Acad. Audiol. 28, 109-118 (2017). https://doi.org/10.3766/jaaa.15076
  8. A. Boothroyd and C. Mackersie, "A "Goldilocks" approach to hearing-aid self-fitting: User interactions," Am. J. Audiol. 26, 430-435 (2017). https://doi.org/10.1044/2017_AJA-16-0125
  9. M. Boymans and W. A. Dreschler, "Audiologist-driven versus patient-driven fine tuning of hearing instruments," Trends Amplif. 16, 49-58 (2012). https://doi.org/10.1177/1084713811424884
  10. R. M. Cox and G. C. Alexander, "Preferred hearing aid gain in everyday environments," Ear Hear. 12, 123-126 (1991). https://doi.org/10.1097/00003446-199104000-00008
  11. W. A. Dreschler, G. Keidser, E. Convery, and H. Dillon, "Client-based adjustments of hearing aid gain: The effect of different control configurations," Ear Hear. 29, 214-227 (2008). https://doi.org/10.1097/AUD.0b013e31816453a6
  12. G. Keidser, C. Brew, S. Brewer, H. Dillon, F. Grant, and L. Storey, "The preferred response slopes and two-channel compression ratios in twenty listening conditions by hearing-impaired and normal-hearing listeners and their relationship to the acoustic input," Int. J. Audiol. 44, 656-670 (2005). https://doi.org/10.1080/14992020500266803
  13. G. Keidser, H. Dillon, and E. Convery, "The effect of the base line response on self-adjustments of hearing aid gain," J. Acoust. Soc. Am. 124, 1668-1681 (2008). https://doi.org/10.1121/1.2951500
  14. F. K. Kuk and C. C. Lau, "The application of binomial probability theory to paired comparison judgments," Am. J. Audiol. 4, 37-42 (1995). https://doi.org/10.1044/1059-0889.0401.37
  15. P. B. Nelson, T. T. Perry, M. Gregan, and D. Van Tasell, "Self-adjusted amplification parameters produce large between-subject variability and preserve speech intelligibility," Trends Hear. 22, 2331216518798264 (2018).
  16. F. K. Kuk and N. M. Pape, N. M, "The reliability of a modified simplex procedure in hearing aid frequency-response selection," J Speech Lang Hear Res. 35, 418-429 (1992). https://doi.org/10.1044/jshr.3502.418
  17. A. T. Sabin, D. J. Van Tasell, B. Rabinowitz, and S. Dhar, "Validation of a self-fitting method for over-the-counter hearing aids," Trends Hear. 24, 2331216519900589 (2020).
  18. D. Byrne and H. Dillon, "The National Acoustic Laboratories'(NAL) new procedure for selecting the gain and frequency response of a hearing aid," Ear Hear. 7, 257-265 (1986). https://doi.org/10.1097/00003446-198608000-00007
  19. J. A. Zakis, H. Dillon, and H. J. McDermott, "The design and evaluation of a hearing aid with trainable amplification parameters," Ear Hear. 28, 812-830 (2007). https://doi.org/10.1097/AUD.0b013e3181576738
  20. J. Chalupper and T.A. Powers, "Changing how gain is selected: The benefits of combining datalogging and a learning VC," Hear. Rev. 13, 46 (2006).
  21. J. M. Vaisberg, S. Beaulac, D. Glista, E. A. Macpherson, and S. D. Scollie, "Perceived sound quality dimensions influencing frequency-gain shaping preferences for hearing aid-amplified speech and music," Trends Hear. 25, 2331216521989900 (2021).
  22. C. T. Jespersen and K. N. Moller, "Reliability of real ear insertion gain in behind-the-ear hearing aids with different coupling systems to the ear canal," Int. J. Audiol. 52, 169-176 (2013). https://doi.org/10.3109/14992027.2012.744105
  23. J. L. Punch, A. A. Montgomery, D. M. Schwartz, B. E. Walden, R. A. Prosek, and M. T. Howard, "Multi-dimensional scaling of quality judgments of speech signals processed by hearing aids," J. Acoust. Soc. Am. 68, 458-466 (1980). https://doi.org/10.1121/1.384758
  24. J. L. Hall, "Application of multidimensional scaling to subjective evaluation of coded speech," J. Acoust. Soc. Am. 110, 2167-2182 (2001). https://doi.org/10.1121/1.1397322
  25. C. Mayo, R. A. Clark, and S. King, "Listeners' weighting of acoustic cues to synthetic speech naturalness: A multidimensional scaling analysis," Speech Commun. 53, 311-326 (2011). https://doi.org/10.1016/j.specom.2010.10.003